
PERFORMANCE ANALYSIS OF OFDM SYSTEMS WITH RANDOM
RESIDUAL FREQUENCY OFFSET

by

Pradeep Chathuranga Weeraddana

A thesis submitted in partial fulfillment of the requirements for the
degree of Master of Engineering in

Telecommunications

Examination Committee: Dr. R.M.A.P. Rajatheva (Chairman)
Dr. Teerapat Sanguankotchakorn
Dr. Poompat Saengudomlert

Nationality: Sri Lankan
Previous Degree: Bachelor of Science in Electronic &

Telecommunication Engineering
University of Moratuwa
Moratuwa, Sri Lanka

Scholarship Donor: Government of Thailand

Asian Institute of Technology
School of Engineering and Technology

Thailand
May 2007

i



ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my thesis advisor, Dr. R.M.A.P.

Rajatheva, for his guidance and unreserved help during the study period. My special

thanks should go to the examination committee members Dr. Poompat Saengudom-
lert, Dr. Teerapat Sanguankotchakorn for their constructive opinions and invaluable

suggestions.
My grateful thanks also go to the rest of the faculty members, all of the staff

members in the telecommunications program for their constant support during my
study period at AIT. Also I’m grateful to the assistant Professor Hlaing Minn, Uni-

versity of Texas Dallas for extending his generous cooperation with my research study.
His cooperation was much helpful in realizing the modern research trend in wireless

communications.
For financial support, I thank the Royal Thai Government. Without this scholar-

ship, this thesis as well as the study at AIT would not have been possible.
Moreover, I would like to convey my heartfelt appreciation to the PhD student, Mr.

Prathapasinghe Dharmawansa for his precious instructions and guidance throughout
my study time at AIT, where I benefited much due to his generosity, and Mr. Surachai

Chieochan from my senior batch, the person who developed this valuable document

format.
I am also greatly indebted to my sisters and friends for their love and support

throughout my study period at AIT.
Last but not least I would like to thank my parents. They have been an inspiration

throughout my life, and always supported my dreams and aspirations, and if I do say
so myself, I think they did a fine job raising me. I’d like to pay my gratitude for all of

them, and all they have done for me. This thesis is dedicated to my parents.

ii



ABSTRACT

Orthogonal frequency division multiplexing (OFDM) is a multicarrier modulation

scheme that achieves high spectral efficiency by using minimally densely spaced orthog-
onal subcarriers without increasing the transmitter and receiver complexities. Despite

its promises OFDM systems are vulnerable to the carrier frequency offset (CFO) arising
from transceiver oscillator mismatches and/or Doppler shifts.

The principle motive behind this thesis study is to investigate the performance
degradation in OFDM systems due to CFO induced by transmitter/receiver oscillator

frequency mismatches. Our derivations are distinct from the other existing results and
derivations available in the open literature as most of them considered CFO to be a

constant, in contrast we treat it as a random parameter which is the case in reality.
We begin with a derivation of new approximated intercarrier interference (ICI)

expression which enables us to carry out the subsequent derivations associated with
new bit error rate (BER) and symbol error rate (SER) expressions for binary phase

shift keying (BPSK) and 4-quadrature amplitude modulation (QAM) OFDM systems
with random CFO or random residual CFO.

Those derived results can be classified into two parts based on the correlation

between the residual CFO or CFO and the channel, i.e., performance analysis with
channel independent residual CFO or CFO and performance analysis with channel

dependent residual CFO. The BER/SER expressions in BPSK/4-QAM OFDM systems
with uniformly distributed CFO and Gaussian distributed residual CFO are obtained

under the channel independent case and additive white Gaussian (AWGN), frequency-
flat and selective Rayleigh fading channels are considered separately. Moreover, in

the case of channel dependent scenario, we derive BER/SER expressions in BPSK/4-
QAM OFDM systems with frequency-flat Rayleigh fading where the residual CFO is

Gaussian distributed conditioned on the channel parameters. The simulation results
are provided to verify the accuracy of the new BER/SER expressions.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In this chapter we concisely describe the OFDM systems, It’s applications, advantages

disadvantages of using OFDM in wireless communication and employed techniques to
mitigate the impairments of OFDM systems. In addition the statement of the problem,

objectives of the research, scopes and limitations are presented followed by the outline

of the thesis.

1.1.1 Multi Carrier Modulation (MCM) Schemes

MCM scheme as the name suggests is a modulation technique in which multiple number

of carriers are used for modulating the information signals. A functional block diagram
of MCM scheme is shown in Figure 1.1. The serial data bits carrying information are

first converted to parallel bit streams and every block of N data bits entering will be
multiplexed on to N channels where each of these bits are modulated by a different

carrier signal. As illustrated in figure 1.1 those carrier signals are φ1 to φN−1.

Conversion

Parallel

 toSerial modulator

modulator

modulator

0X

1X

1−NX

)(0 tφ

)(1 tφ

)(1 tN −φ

)(0 tΨ

)(1 tΨ

)(1 tN −Ψ

)(~ tsX

Figure 1.1: Multi carrier modulation scheme

1.1.2 OFDM Systems and Applications of OFDM

OFDM can be considered as one of the most popular MCM scheme with densly spaced
subcarrierrs and overlapping spectra which was patented in the United States in 1970.

The innovation of the OFDM technique was arround late 1960s, gradually spreading

over various wireless communication applications and standards with it’s rapid matu-
rity to survive under upredictable wireless channel conditions.
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In the OFDM these carrier signals are taken to be orthoganal in time. Thus OFDM
time-domain waveforms are chosen such that the mutual orthoganality is ensured even

though sub carrier spectra may overlap. Manipulation of the discrete Fourier transform
(DFT) in the modulation and demodulation of parallel data transmission techniques

(Weinstein and Ebert, 1971) shows the possibility of removing the whole bunch

of oscillators tuned to each subcarrier frequencies and demodulators with coherent
detection as required by FDM. Thus the use of fast Fourier transform (FFT) and

inverse fast Fourier transform (IFFT) in implementations ensures a fully digitalized
realization of OFDM transceivers which can be easily embedded in to special-purpose

hardware components. So that, with the FFT algorithm to compute DFT, a new
direction on the practicality of an efficient OFDM system evolved resulting FFT based

OFDM systems. The main functional block diagram of an FFT based OFDM system
is shown below in Figure 1.2.

in Data

Out

 Data

P / S IFFT S / P

S / P P / S

Guard

Insert

phaseIn 

Quadrature

LPF

LPF

BPF

BPF

Channel

LPF

LPF

Sampler
Guard

Remove
FFT

Estimation Channel

andon Compensati

,Estimation CFO

Decision &

on Equalizati

)2cos( tf cπ

)2sin( tf cπ−

AWGN

))(2cos( tffc Δ−π

))(2sin( tffc Δ−− π

Figure 1.2: Block diagram of an FFT based OFDM system.

The physical layers of many wireless network standards, such as IEEE 802.11a,
IEEE 802.16a, HIPERLAN/2 (IEEE Std 802.11a-1999(R2003), 2003; IEEE Std

802.16TM-2004, 2004) and wire-line digital communication systems such as ADSL are
some of the main application areas of OFDM (Chow et al., 1991; Cioffi). Furthermore

it has been approved as the new European digital audio broadcasting (DAB) standards
as well as for the terrestrial digital audio broadcasting (DVB) systems.

1.1.3 Advantages of Using OFDM

OFDM is in particular capable of dealing with the multipath reception, one of the
main problem which is encountered in wireless communication systems. Many narrow-

band digital signals which are transmitted simultaneously are overlapped to create the

wideband OFDM spectrum. Higher the number of simultaneous or parallel transmit-
ted channels, lesser the data rate that each separate carrier should carry, consequently

2



increases the symbol duration thus compelling the multipath signals or waves to be
suppressed inside one symbol duration.

Splitting of data among a huge number of carriers which are overlapped and
closely packed, corresponds to the segment frequency division multiplex inside the

term OFDM. The data generated from one single source is capable of populating the

whole bandwidth possessed by the OFDM system. The data sequence coming serially
is converted to a parallel mode and transmitted. By doing so, the amount of data per

carrier is comparatively reduced to a small number consequently reducing the bitrate
per carrier as well. This ultimately directs to a significant reduction in the influence

of intersymbol interference (ISI).
One important fact to be noted in OFDM systems is that, the overall bandwidth

acquired by the OFDM system is far beyond the fading channel’s correlation band-
width. So that, even with some of the carrier signals are distorted due to the fact

multipath fading, the transmitted OFDM signal can be hopefully regenerated at the
receiver by adequately employing techniques such as error control coding. The phe-

nomenon behind this is that the rest of the undistorted or less distorted carriers can still
be received and demodulated without any errors. Rayleigh fading environments can

cause burst errors. Randomization of these kind of errors can be effectively addressed
by OFDM systems with the use of interleaving of transmitted symbols after the serial

to parallel conversion of these symbols. Irrespective of the width of the OFDM band-

width and channel response, each subcarrier experiences only a frequency-flat fading
environment. In other words a frequency-selective fading environment can be strate-

gically partitioned in to a number of frequency-flat fading environments because of
the entire spectrum of the OFDM system is composed of so many independent and

orthogonal narrowband subcarrier spectrums. So that the equalization process would
be more easier than in a typical serial data transmission system.

In addition, the introduction of a guard interval (cyclic prefix or suffix) in to the
raw OFDM block at the transmitter decreases the OFDM system’s susceptibility to

inter symbol interference (ISI) or inter block interference (IBI) which arises due to the
phenomenon called delay spread (Cimini, 1985). Nevertheless, in-band fading or in

other words inter carrier interference (ICI) may still remain.

1.1.4 Impairments of OFDM and Mitigation Techniques

Carrier frequency offset due to time dispersion, frequency mismatches between trans-

mitter and receiver oscillators and phase noise imparted to the signal in up-conversion
and down-conversion processes at the transmitter/receiver can be considered as the

main impairments inherent in OFDM systems. Orthogonal frequency division multi-

plexing is a bandwidth efficient signaling scheme where the orthogonality among the
subcarriers should be maintained to a high degree of precision. Since the spectra of

the sub-carriers are overlapping, an accurate frequency synchronization technique is
needed. However, due to the unavoidable factors which were mentioned earlier, the

orthogonality of subcarriers will be compromised resulting in intercarrier interference
(ICI). That is the useful energy of a particular sub carrier spills over the other sub

carriers which degrades the performance of OFDM systems significantly (Stantchev
and Fettweis, 2000).

There are two different approaches to address the ICI problem induced by the car-

3



rier frequency offset. The first approach performs CFO estimation and compensation.
There exist several CFO estimation techniques which can be categorized as training

based methods (Moose, 1994; (schmidl and Cox, 1997; Morelli and Mengali,
1999, 2000; Lei and Tung-Sang, 2004; Hlaing Minn et al. [a] [b] [c], 2006; Hlaing

Minn and Xing S., 2005) and semi-blind or blind methods (Van De Beek et

al., 1997; Tureli, Liu and Zoltowski, 2000). The training based methods offer
faster synchronization, lower complexity, and more reliable performance at the cost of

training overhead while the semi-blind or blind methods save training overhead at the
expense of longer latency, higher complexity, and less reliable performance. The second

approach applies a self ICI cancellation (Zhao and Häggaman, 1996; Armstrong,
1999) at the sacrifice of data rate. In all current OFDM systems, the first approach

is adopted. After the CFO estimation and compensation, there still exists a residual
CFO which affects the system error performance.

In the literature the error performance analysis has been treated by a number of
authors. Most of the time the followed procedures have utilised the fact that, CFO is

constant. However, in practice the CFO error is a random variable with an appropriate
probability density function. The BER analysis of OFDM systems with a random CFO

represents a more practical performance but it has not been addressed in the literature.
In this thesis we mainly focus on the random nature of the normalised residual

carrier frequency offset rather than treating it as a constant parameter in the bit error

rate expressions.

1.2 Statement of the Problem

The principal weakness of OFDM technique is its sensitivity to frequency offset errors
caused by Doppler shifts and/or transmitter receiver oscillator instabilities. As the

subcarriers are closely spaced in frequency compared to the channel bandwidth,the
frequency offset must be kept within a small fraction of the subcarrier spacing to avoid

severe bit error rate degradation. So the performance impact due to those impairments
are of high importance.

1.3 Objectives of the Research

This thesis investigates a novel approach of analyzing the performance of OFDM sys-
tems treating the normalised residual CFO as a random variable. Our main consid-

eration is focused on the Error performance analyzing for single input single output
(SISO) OFDM systems with CFO, for different type of channel models assuming perfect

channel state information (CSI) is known at the receiver. This includes the additive
white Gaussian channel, flat fading channel and frequency selective channel. A brief

classification of the main objectives of the thesis is as follows.

1. Develop a new approximated ICI expression which enable us to analyse perfor-

mance of OFDM systems with random residual CFO.

2. Performance analysis of BPSK OFDM systems with channel-independent residual
CFO or CFO

(a) AWGN channel with uniformly distributed CFO

4



(b) Frequency-flat Rayleigh fading channel with uniformly distributed CFO

(c) Frequency-selective Rayleigh fading channel with uniformly distributed CFO

(d) AWGN channel with Gaussian distributed residual CFO (under perfect
power control 1)

(e) Frequency-flat Rayleigh fading channel with Gaussian distributed residual
CFO (under perfect power control)

3. Performance analysis of BPSK OFDM systems with channel-dependent residual
CFO

(a) Frequency-flat Rayleigh fading channel with Gaussian distributed residual
CFO (under no power control)

4. An alternative approach to BER analysis in frequency-flat/frequency-selective
channels in BPSK OFDM systems

(a) Frequency-flat Rayleigh fading channel

(b) Frequency-selective Rayleigh fading channel

5. Performance analysis of 4-QAM OFDM systems with channel-independent resid-

ual CFO or CFO

(a) AWGN channel with uniformly distributed CFO

(b) Frequency-flat Rayleigh fading channel with uniformly distributed CFO

(c) AWGN channel with Gaussian distributed residual CFO (under perfect
power control

(d) Frequency-flat Rayleigh fading channel with Gaussian distributed residual

CFO (under perfect power control)

6. Performance analysis of 4-QAM OFDM systems with channel-dependent residual

CFO

(a) Frequency-flat Rayleigh fading channel with Gaussian distributed residual

CFO (under no power control)

1.4 Scope and Limitations

This thesis study is subject to the following limitations.

1. Channel tap coefficients are assumed to be independent of each other and treat

as circularly symmetric complex Gaussian random variables.

2. The ideal channel state information is assumed in some derivations.

3. A quasi-static channel model is assumed.

1
Perfect power control makes certain combinations of channel parameters to be constant with the use of proper pilot symbol design.

See section 3.2.4
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4. For each sub channel over a given frame, a symbol spaced length L tap-delay-line
model is assumed in the case of frequency selective fading.

5. Message symbols are assumed to be equi-probable for simulation purposes and
in all analytical derivations.

6. In all analytical derivations, The CFO-induced, symbol-index-dependent phase

shift is not considered. Every symbol is assumed to be phase synchronized so that
the above phase shift is neglected by assuming perfect phase synchronization of

all the symbols.

1.5 Outline of the Thesis

The rest of this thesis is structured and organized as follows. Chapter two, which is

the literature review, discusses the basic mathematical description and the behaviours
of OFDM systems, estimation techniques used in OFDM, and the literature related to

the performance analysis in OFDM systems. In chapter three we present a detailed
analysis of performance degradation due to CFO of BPSK OFDM systems and the

corresponding simulation results and discussions. Chapter four consists of a detailed
analysis of the performance degradation due to CFO of 4-QAM OFDM systems followed

with the corresponding simulation results and discussions. Chapter five outlines the
conclusion and recommendations for further studies.

6



CHAPTER 2

LITERATURE REVIEW

2.1 Mathematical Description of OFDM Systems

OFDM is a block modulation scheme where data symbols are transmitted in parallel

by employing a large number of subcarriers. A block of N serial data symbols, each
of duration Ts, is converted in to a block of N parallel data symbols, each of duration

T = NTs. Figure 2.1 shows how the OFDM modulated signal is generated. The serial

input data symbols are given by Xn = {Xn,0, Xn,1, · · · , Xn,N−1}. In the case of OFDM

∑
−

=

1

0

N

k
)(tha ),( ntb xnX

0,nX

TtNje /)1(2 −π

Ttje /2π

0je

1, −NnX

1,nX

Figure 2.1: OFDM Modulation.

the set of orthogonal functions are chosen from the set φk(t) = {exp (j2πfkt), 0 ≤ k ≤
N − 1}, where fk is choose in such a way that the orthogonality of the subcarriers are
preserved. So that, in order to preserve the orthogonality of the subcarriers everywhere

(t ∈ (−∞,∞)), the subcarrier functions required to be windowed by the rectangular
pulse uT

1 and then the minimum separation of the subcarrier spacing is found to be
1
T
. Thus without loss of generality fk can be replaced with k

T
. The complex envelope

of an OFDM system is given by (Stüber, 2001),

s̃(t) = A
∑

n

b(t− nT,Xn) (2.1)

where

b(t,Xn) = ha(t)

N−1∑
k=0

Xn,k exp

{
j
2π(k − N−1

2
)t

T

}
(2.2)

where n represents the block index, and the amplitude shaping pulse ha(t) = uT (t) as

mentioned previously. The data symbols Xn,k can be taken from any two dimensional

1
This is unit step function, valued one from o to T and zero elsewhere
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signal constellation. As we discussed in the previous chapter OFDM modulation and
demodulation can be achieved in the discrete-domain by using DFT. Without loss of

generality we can rewrite the complex envelope given by (2.1), after removing the block
index n and the frequency offset term exp

{− j π(N−1)t
T

}
, as

s̃(t) = A
N−1∑
k=0

Xk exp

{
j
2πkt

NTs

}
uT (t) (2.3)

Sampling the complex envelope at epochs t = nTs gives the sequence

xn = s̃(nTs) = A

N−1∑
k=0

Xk exp

{
j
2πkn

N

}
(2.4)

so that the sequence x = {x0, x1, · · · , xN−1} represents the inverse discrete Fourier

transform (IDFT) coefficients of the sequence X = {X0, X1, · · · , XN−1} with A = 1
N

.
This IDFT coefficient vector x is used in the fast Fourier transform (FFT) based

OFDM transmitter to generate the required analog signal to be transmitted.

2.2 Generic FFT Based OFDM Transmitter and Receiver

The IDFT operation given by (2.4) is a complex domain operation. That is, the

regeneration of X at the receiver requires both the real and imaginary parts of the
elements of x. This necessitates the transmission of both the real and imaginary

parts of each xn’s for successful symbol reception. However an additional bandwidth
is not required as both can be up converted separately using orthogonal functions

cos (2πfct), and sin (2πfct), as shown in Figure 2.2. Here Im and Re blocks correspond

to extracting imaginary and real parts of the coming serial symbol stream x respectively
and s(t) is the transmitted signal. At the receiver, as shown in the Figure 2.2, descrete

}{ kX
0X 1−NX2−NX1X

IFFT

0x 1−Nx
2−Nx1x

guard

Insert

}{ g
kx

Im

Re

D/A

D/A

)(ts

)2sin( tfcπ

)2cos( tf cπ

Figure 2.2: OFDM Transmitter.

complex sequence z = {z0, z1, .., zN−1} is regenerated from the received signal r(t) and
successive operations yield Z = {Z0, Z1, · · · , ZN−1}, which is the complex demodulated

symbol sequence. In practice r(t) is the distorted signal of s(t) due to various factors
such as addition of noise, influences of the channel responses. The following section

briefly discusses some of OFDM’s potentials in alleviating the effects arise due to
undesired channel response and ISI.

8



Im

0z
1−Nz2−Nz1z

FFT

0Z
1−NZ2−NZ1Z

guard

Remove)(tr

A/D

A/D

LPF

LPF

)2sin( tfcπ

)2cos( tfcπ

Re

}{ kZ

Figure 2.3: OFDM Receiver.

2.3 ISI mitigation and Influence of the Channel and Noise on OFDM Sys-

tems

As we mentioned in the previous chapter, because of the whole bandwidth occupied by

an OFDM system is a composite of a number of overlapping, orthogonal and narrow
subcarrier spectrums or sub-bands, the fading environment over each of these can be

considered as relatively flat. If we consider the sub-band span over the whole OFDM
spectrum, it would be a very small fraction. So that the equalization process would

be more easier than in a typical serial data transmission system. That is, OFDM can
transform a frequency-selective ISI channel into a frequency-flat channel, which is one

of the main advantage of using OFDM. Considering a non-ideal band limited channel
we can say that, data transmission with symbol duration Ts may introduce ISI as

discussed in the previous chapter which demands receivers with complex equalization
methods such as Viterbi. In what follows we discuss ISI vulnerability of OFDM, how

the OFDM systems can mitigate the use of complex equalizers at the receiver and
how the frequency-selective channel is partitioned in to several frequency-flat fading

channels.

Assume that the channel is time-invariant over the period t ∈ (0, T ), hence Tc >>
T in the wideband channel, where Tc is the coherence time of the channel. So that we

call the channel is quasi-static. Now let the channel be modelled by an L-tap delay
line as shown in the Figure 2.4.

Here hi’s are the complex tap gains, xg
k is the transmitted sequence of IDFT

samples xk with padded cyclic suffix, yg
k is the corresponding channel out put, ng

k is

the additive white Gaussian noise samples, and zg
k is the received signal samples at the

receiver. To eliminate the ISI altogether at the expence of a small decrease in capacity,

a guard interval of length GTs ≥ LTs can be inserted between suucessively modulated
OFDM blocks. A guard interval consisting of a cyclic prefix or suffix of length G which

is appended to the sequence x at the transmitter. Figure 1.2 and 2.2 show the location
of where this is operation is performed and Figure 2.5 dipicts this process in detail. If

a cyclic suffix is assumed, the transmitted sequence with guard interval can be denoted
by (Stüber, 2001)

xg
n = x(n)N

= A
N−1∑
k=0

Xk exp

{
j
2πkn

N

}
n = 0, 1, · · · , N +G− 1 (2.5)
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Figure 2.5: Insertion & removal of cyclic prefix.

where (n)N is the residue of n modulo N . When an OFDM block is received, the first

G ≥ L samples are assumed to be corrupted by ISI from the previous block. The ISI
is removed by replicating these samples with the cyclic suffix according to (Stüber,

2001),
zn = zg

G+(n−G)N
n = 0, 1, · · · , N − 1. (2.6)

Writing the complex envelope of sequence yg
k, we have

yg
k =

L−1∑
m=0

hmx
g
k−m =

N−1∑
m=0

hmx
g
k−m (2.7)

and hence zg
k can be written as

zg
k = yg

k + ng
k =

N−1∑
m=0

hmx
g
k−m + ng

k. (2.8)

The second equality in (2.7) is due to the fact that, practically N >> L and hence
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hm’s where m > L − 1 are considered to be equal to zero. Using the equations (2.6)
and (2.8) we can write zk as,

zk =
N−1∑
m=0

hmx(k−m)N
+ n′

k; k = 0, 1, · · · , N − 1. (2.9)

Now, the first term of (2.9) can be considered as the circular convolution of the two

sequences hk’s and xk’s. Here n′
k is again represents the AWGN noise samples. Thus,

we have the received complex sequence of samples zk as

zk = hk � xk + nk = IDFT (HmXm) + n′
k (2.10)

where � stands for the descrete convolution operation, Hm is the N -point DFT coeffi-
cients of the zero padded sequence {h0, h1, · · · , hL−1, 0, 0, · · · , 0}, and Xm denotes the

transmitted complex symbols. Now considering the DFT operation at the receiver we
can obtain,

DFT{zk} = Zm = DFT{IDFT (HmXm)} +DFT{nk} = HmXm +Nm (2.11)

where Zm and Nm are the N -point DFT coefficients of the sequences zk and nk respec-
tively. This reveals the fact that, the OFDM’s ability to correct a frequency-selective

fading channel in to a frequency-flat fading channel with a multipath diversity gain
given by Hm.

2.4 Impairments of OFDM

2.4.1 Carrier Frequency Offset(CFO) Due to Time Dispersion

As a consequence of low Doppler frequency the Rayleigh fading channel impulse re-

sponse (CIR) taps fluctuate only slowly compared to the duration of the OFDM sym-
bol, then a time-invariant CIR can be associated with each transmitted OFDM symbol.

Naturally all of the Rayleigh-fading tap values are changing gradually over the dura-

tion of a number of consecutive OFDM symbols implying that the channel transfer
function of a specific OFDM symbol is time-invariant for the duration of one OFDM

symbol. But if the Raleigh-fading CIR taps are changing rapidly owing to high relative
movement of the transmitter and the receiver leads high Doppler frequency to be in-

troduced. This causes the OFDM system experiences ICI which can be interpreted in
frequency domain as a frequency domain channel transfer function fluctuation during

the reception of the OFDM symbol. However due to this scenario, the orthogonality
of the sinc-shaped subchannel spectra may be destroyed by the channel inducing ICI.

2.4.2 Constant Carrier Frequency Offset

Carrier frequency errors result in a shift of the received signal’s spectrum in the fre-
quency domain which are created by factors such as differences in sampling clock

frequencies of the transmitter and the receiver and clock jitter. If the frequency error
is an integer multiple of the subcarrier spacing, then the subcarriers are still mutually
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orthogonal, but the received data symbols,which map to the OFDM spectrum, are in
the wrong position in the demodulated spectrum, resulting in a bit error rate (BER)

of 0.5. if the CFO is not an integer multiple of the subcarrier spacing, then energy
spilling over between the subcarriers, resulting in loss of their orthogonality causing

ICI.

2.4.3 Phase Noise

Practical Oscillators suffer from phase noise which is a random perturbation of the
phase of the steady sinusoidal waveform. Practical modulators or demodulators usually

work either at base band or a convenient intermediate frequency(IF). As we must
transmit our signal at some allocated radio frequency(RF) it follows that in practice

the modulated signal must be shifted up to RF in the transmitter, and down from RF
to IF or base band in the receiver. In practice to perform these up conversions and

down conversions of the frequencies, we require the use of oscillators and those will
introduce the phase noise, which will be imparted to the signal. Thus the phase noise

contribution of both the transmitter and the receiver can be considered as an additional
multiplicative effect of the radio channel. For OFDM schemes, multiplication of the

received time domain signal with a time-varying channel transfer function is equivalent
to convolving the frequency domain spectrum of the OFDM signal with the frequency

domain channel transfer function.Usually the phase noise spectrum’s bandwidth is
wider than the subcarrier spacing resulting in energy spillage into other sub-channels

and therefore in intersubcarrier interference. The effects of phase noise on OFDM

systems have been intensively investigated in the literature (Armada, 1998; Pollet
et al., 1995; Shentu et al.,2003).

2.5 Impairments Mitigation Techniques in OFDM

In recent years numerous research contributions have appeared on the topic of the
channel estimation techniques designed for employment in single user, single transmit

antenna assisted OFDM systems, since the availability of an accurate channel transfer
function estimate is essential for coherent symbol detection at an OFDM receiver. The

techniques proposed in the literature can be classified as pilot−assisted, decision −
directed(DD) and blind channel estimation methods.

2.5.1 Pilot Assisted Estimations

In this case s subset of the available subcarriers is dedicated to the transmission of
specific pilot symbols known to the receiver. This is used at the cost of a reduction of

the number of useful subcarriers available for data transmission. For instance a family
of pilot−assisted channel estimation techniques was investigated by Moose (Moose,

1994), T Schmidl and D Cox (Schmidl and Cox, 1997), Morelli and Mengali (Morelli

and Mengali, 1999, 2000), Jing Lei and Tung-Sang (Jing Lei and Tung-Sang, 2004)
and Minn (Hlaing Minn et al. [a] [b] [c], 2006; Hlaing Minn and Xing S., 2005).
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2.5.2 Decision-Directed Estimations

By contrast, in the context of decision-direct channel estimations the subcarrier data
symbols are considered as pilots. In the absence of symbol errors and also depending

on the rate of channel fluctuation (Hanzo et al., 2003)., it was found that accurate
channel estimates can be obtained, which are often better quality in terms of the

estimator’s mean square error (MSE). A comprehensive analysis of this technique was
performed by authors such as Zhao and Häggman (Zhao and Häggman, 1996),

Armstrong (Zhao and Häggman, 1996) and Edfors (Edfors et al., 1998)

2.5.3 Blind Estimations

In the estimation techniques described above, the use of pilot symbols are unavoidable,

On the contrary, there are no pilot symbols used in the blind channel estimation tech-

niques and thus high spectral efficiency at the expense of high complexity, long delay,
and/or less robust/accurate estimation is inevitable. The existing blind channel esti-

mation techniques which are utilized in OFDM systems can be categorized in to two
parts. The first one is known as statistical methods. The transmitted signal properties

such as cyclostationarity which is due to the insertion of cyclic prefix are investigated
in this method and those cyclic properties and the statistics of the received signal is

manipulated in order to obtain the acceptable channel statistics (Heath and Gian-
nakis, 1999). On the other hand the second part utilises a method which is known

as subspace decomposition of the correlation matrix of the pre-DFT received blocks
(Cai and Akansu, 2000; Muquet et al., 2002). Furthermore, Van de Beek (Van

de Beek et al., 1997), Tureli (Tureli et al., 1997), are also among the authors who
studied the blind channel estimation techniques.

2.6 Performance Analysis of OFDM with CFO

A careful literature survey reveals two main performance analysis methods in OFDM

systems. One approach is to treat ICI as a Gaussian process based on the central limit
theorem (Russell and Stüber, 1995; Rugini and Banelli, 2005) which does not yield

satisfactory results at high signal to noise ratios (SNR)(Keller and Hanzo, 2000).
In contrast the approach due to Sathananthan and Tellambura (Sathananthan and

Tellambura, 2001), uses the characteristic function and the Beaulieu series to derive
exact bit error rate (BER) expressions for AWGN channel in the presence of ICI where

the probability of error is always expressed conditioned on normalized frequency offset.
Some authors (Dharmawansa et al. [a] [b], 2006) have derived exact BER/SER

expressions for AWGN , frequency flat and frequency selective channels in the presence
of fixed CFO error.

A number of methods have been proposed for estimation and compensation of
frequency offset in OFDM systems. The technique proposed by Moose (Moose, 1994)

contains an algorithm to estimate offset so that it may be removed prior to demodula-
tion. T Schmidl and D Cox (schmidl and Cox, 1997) have presented a method for the

rapid and robust synchronisation of OFDM signals, and acquisition is obtained upon

the receipt of just one training sequence. Many authors have proposed the use of pilot
symbols or tones (Morelli and Mengali, 1999, 2000; Jing Lei and Tung-Sang,
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2004; Hlaing Minnet al. [a] [b] [c], 2006; Hlaing Minn and Xing S., 2005) where
these can be used either in continuous or packet based burst transmissions.

From the above various methods, the estimator proposed by Morelli and Mengali
(Morelli and Mengali, 2000), which is a joint maximum likelihood (ML) estimate

where the channel coefficients and the normalize frequency offset error is measured

jointly, is used in some of our derivations.

14



CHAPTER 3

BER ANALYSIS OF BPSK OFDM SYSTEMS WITH RANDOM

RESIDUAL FREQUENCY OFFSET

3.1 Introduction

In this chapter, we derive closed form bit error rate (BER) expressions for orthogonal
frequency division multiplexing (OFDM) systems with residual carrier frequency offset

(CFO). Most of the published work treat CFO as a nonrandom parameter. But in our
study we consider it as a random parameter. The BER performance of binary phase

shift keying (BPSK) OFDM system is analyzed in the cases of additive white Gaussian
noise (AWGN), frequency-flat and frequency-selective Rayleigh fading channels. We

further discuss how these expressions can be related to systems with practical estima-
tors. The simulation results are provided to verify the accuracy of these error rate

expressions.

3.2 System Model and Analysis

We consider a quasi-static channel and first present the signal model for a frequency-
selective fading channel from which the models for AWGN and frequency-flat fading

channels can easily be obtained. We consider an OFDM system with N subcarriers.
The following notations were used in the subsequent derivations.

Notations: (.)H , (.)T , and (.) denote the Hermitian transpose, the transpose, and
the conjugate operations, respectively. Furthermore |z|, ∠z, �(z) and �(z) denote the

absolute value, angle, real and imaginary components of the complex quantity z, re-
spectively. 1k and 0k represent the all-one column vector and the all-zero column vector

of length k while Ik and 0k×n denote the k × k identity matrix and the k × n all-zero
matrix, respectively. The N -point unitary discrete Fourier transform (DFT) matrix

is denoted by F = [f0f1 . . .fN−1] where fk = [1 e−j2πk/N · · · e−j2π(N−1)/N ]T/
√
N . We

define FL = [f0f1 · · ·fL−1]. [X]k,n represents the (k, n)th element of the matrix X,

and diag{x} denotes a diagonal matrix with diagonal elements defined by x. E{.}
represents the statistical expectation and V ar{.} represents the statistical variance.

The discrete-time received sequence after passing through a L-tap delay line can be

written as (Wang and Giannakis, 2000),

x̄(n) =
L−1∑
l=0

ej 2πvn
N h(l)ū(n− l) + n̄(l). (3.1)

The exponential term in this equation is introduced to reflect the influence of CFO
v, h(l) are tap coefficients (see Figure 2.4), ū(i) is time domain symbol sequence of

ith transmitted OFDM block after the cyclic prefix addition, and ng
k is the sequence

of AWGN noise samples. Note that the sequences xg
k, ng

k and zg
k in Figure 2.4 is

equivalent to the sequences ū(i), n̄(i) and x̄(i) in (3.1) respectively. This received
sequence equation (3.1) can be implemented as given in Figure 3.1 and it shows the

OFDM signal transmission model with cyclic prefix (CP) which we use throughout our
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derivations. As shown in Figure 3.1 s(i) represents the time domain symbol sequence
of ith transmitted OFDM block.

)(is )(iu

)(in

)(ix )(ir
cpT )(vG 1

10
−+ zHH cpR

Figure 3.1: Mathematical Channel Model, (Wang and Giannakis, 2000)

In what follows, we briefly outline the main arguments and the procedures to

derive the received signal vector in terms of system specific parameters (Wang and
Giannakis, 2000). The transmitted OFDM block or signal vector in the time-domain

is given by s(i). ū(i) is the signal vector after the addition of CP. This signal vector
passes through the channel and AWGN noise samples n̄(i) are added to give x̄(i) and

finally we have the received signal vector r̃(i) after the removal of cyclic prefix where,

s(i)= [siN siN+1 · · · siN+N−1]
T

ū(i)= [ūiP ūiP+1 · · · ūiP+P−1]
T

n̄(i)= [n̄iP n̄iP+1 · · · n̄iP+P−1]
T

x̄(i)= [x̄iP x̄iP+1 · · · x̄iP+P−1]
T

r̃(i)= [r̃iN r̃iN+1 · · · r̃iN+N−1]
T

where P is the block length after the cyclic prefix was added and it is chosen such

that P >> L− 1 and N is the DFT length. Note that the i in afore mentioned signal
vectors denote the block index of the transmitted/received signals. Let L′ = L− 1 for

notational simplicity and P = N +L′ in order to get rid of the ISI. Now we can simply
show that

x̄(i) = G(v)H0ū(i) + G(v)H1ū(i− 1) + n̄(i) (3.2)

where G(v) = diag[1 ej2πv/N · · · ej2π(P−1)v/N ] and

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(0) 0 0 . . . 0

... h(0) 0 . . . 0

h(L′) . . .
. . . . . .

...

...
. . . . . .

. . . 0

0 . . . h(L′) . . . h(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . h(L′) . . . h(1)

...
. . . 0

. . .
...

0 . . .
. . . . . . h(L′)

...
...

...
. . .

...

0 . . . 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To obtain ISI-free blocks, the cyclic prefix or guard chips are added in the transmitted
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block s(i) according to the relation ū(i) = Tcps(i) where

Tcp =

⎡
⎢⎢⎢⎢⎣

0L′×(N−L′) IL′

IN−L′ 0(N−L′)×L′

0L′×(N−L′) IL′

⎤
⎥⎥⎥⎥⎦ .

It is obvious from equation (3.2) that, ith block x̄(i) is made out of not only from the
block ū(i) but also from the previous block ū(i − 1). That is, careful observations

reveal that, the first L′ entries in the block x̄(i) are deteriorated by the previous
block. So, to remove the first L′ entries in x̄(i), the receive matrix Rcp is defined as

Rcp = [0N×L′ IN ] and hence we have r̃(i) = Rcpx̄(i). It can easily be shown that
the matrix multiplication RcpG(v)H1ū(i− 1) = 0N×1 and thus using (3.2) we get the

relation

r̃(i) = RcpG(v)H0ū(i) + Rcpn̄(i) = RcpG(v)H0Tcps(i) + Rcpn̄(i). (3.3)

After some matrix manipulations, (3.3) can easily be written as

r̃(i) = GT (v)RcpH0Tcps(i) + w̃(i) (3.4)

where w̃(i) = Rcpn̄(i) and GT (v) is a truncated version of G(v) such that

GT (v) = diag[ej2πL′v/N ej2π(L′+1)v/N · · · ej2π(P−1)v/N ].

Let the matrix multiplication RcpH0Tcp = H̃ where H̃ constitute a circulant matrix
(Wang and Giannakis, 2000) such that H̃ =

√
NF HHF , where H = diag {FLh} =

diag[H0 H1 · · · HN−1]
T and h = [h0 h1 · · · hL−1]

T . Note that we use hm and h(m) ;
m = 0, 1, · · · , L− 1 interchangeably. So (3.4) gives us

r̃(i) =
√
NGT (v)F HHFs(i) + w̃(i). (3.5)

Pre-multiplying (3.5) by the matrix Gc where Gc(v) = e−j2πL′v/NIN we can easily
obtain the received symbol vector as

r(i) =
√
NΓ(v)F HHc(i) + w(i) (3.6)

where Γ(v) = Gc(v)GT (v) = diag[1 ej2πv/N · · · ej2π(N−1)v/N ], w(i) = Gcw̃(i),
r(i) = Gcr̃(i) and c(i)= [ciN ciN+1 · · · ciN+N−1]

T denote the frequency domain symbol

sequence in the ith OFDM block transmitted, which is simply obtained by the unitary
DFT operation c(i) = Fs(i). Without loss of generality, the block index i can be

dropped and hence in the presence of a normalized (by the subcarrier spacing) CFO
v, the time-domain received signal vector after the cyclic prefix removal can be given

by (Hlaing Minn et al. [a], 2006 )

r = Γ(v)Sh + w =
√
NΓ(v)F HHc + w (3.7)

where r = [r0 r1 · · · rN−1]
T , c = [c0 c1 · · · cN−1]

T , w = [w0 w1 · · · wN−1]
T , and

h = [h0 h1 · · · hL−1]
T as defined before. Here {hn} denote the channel impulse
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response (CIR) coefficients and L is the number of CIR taps. Assume that {wn}
are independent and identically distributed zero-mean circularly-symmetric complex

Gaussian noise samples each having a variance of σ2 per dimension. {cn} are in-
dependent equi-probable frequency domain transmit symbols and the corresponding

time-domain signal vector is given by s= [s0 s1 · · · sN−1]
T = F Hc. The time-domain

signal matrix in (3.7) is defined by [S]k,n=sk−n, 0 ≤ k ≤ N − 1, 0 ≤ n ≤ L − 1 with
sk=

1√
N

∑N−1
n=0 cne

j2πnk/N for k = L− 1, · · · , N − 1.

Let v̂ be the estimated frequency offset, v̂=v + vΔ where we denote the residual
CFO as vΔ. After the frequency offset compensation and DFT, the received signal

vector is given by
R =

√
NFΓH(vΔ)F HHc + w′ (3.8)

where R = [R0 R1 · · · RN−1]
T , w′=[n′

0 n
′
1 · · · n′

N−1]
T and w′ has the same statistical

properties as w. Note that if we use CFO instead of residual CFO (see section 3.3.1)

we can still use the equation given by (3.8) by replacing vΔ by v in further processing.
Evaluating the (k, l)th element of FΓH(vΔ)F H and denoting it as I ′l−k (ICI coefficient),

we can obtain

I ′l−k =
1

N

N−1∑
n=0

exp
{
j2π(l − k − vΔ)

n

N

}
; k, l = 0, 1, · · · , N − 1. (3.9)

Then, using (3.8) we can express the received symbol on the kth subcarrier as

Rk =
√
NckHkI

′
0 +

√
N

N−1∑
l=0,l �=k

clHlI
′
l−k + n′

k; k = 0, 1, · · · , N − 1. (3.10)

The expressions for AWGN and frequency-flat fading channels can be derived using

(3.10).
Next, we analyze the ICI coefficients. With the assumption that the CFO or

residual CFO is very small and using the approximation exp(jx)
(1 + jx) for small
real-valued x, we get

I ′l−k ≈ 1

N

N−1∑
n=0

exp
{
j2π(l − k)

n

N

}
− jvΔ

2π

N2

N−1∑
n=0

n. exp
{
j2π(l − k)

n

N

}
. (3.11)

With some trigonometric manipulations (Gradshteyn and Ryzhik, 1980 ), we can
further reduce the above relation. It is obvious that (3.11) can be written as

I ′l−k ≈ δlk − jvΔ
2π

N2

N−1∑
n=0

[
n cos (βn) + jn sin (βn)

]

where δlk is Kronecker delta and β=2π(l−k)
N

. When l �= k we can write
∑N−1

n=0 n cos (βn)=[
N sin

(
2N−1

2
β
)

2 sin
(

β
2

) − 1−cos(Nβ)

4 sin2
(

β
2

) ] (Gradshteyn and Ryzhik, 1980 ). With some trigonomet-

ric manipulation, we can derive

N−1∑
n=0

n cos (βn) = −N
2
.
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Similarly, when l �= k, we can write
∑N−1

n=0 n sin (βn)=
[

sin(Nβ)

4 sin2
(

β
2

) − N cos
(

2N−1
2

β
)

2 sin
(

β
2

) ]
(Gradshteyn and Ryzhik, 1980 ), which yields

N−1∑
n=0

n sin (βn) = −N
2

cot
[π(l − k)

N

]
.

When l = k and β = 0, we have
∑N−1

n=0 n cos (βn)=N(N−1)
2

and
∑N−1

n=0 n sin (βn)=0.
Using the above results we can deduce (3.12).

I ′l−k ≈

⎧⎪⎨
⎪⎩

πvΔ

N
[− cot(π(l−k)

N
) + j] , if l �= k

1 − jπN−1
N
vΔ , if l = k

(3.12)

We will use (3.12) in our BER analysis since the residual CFO is typically small in

practical OFDM systems.

3.3 Performance Analysis with Channel-Independent CFO or Residual

CFO for BPSK OFDM Systems

We can treat the CFO or residual CFO and the CIR as independent parameters under
some conditions. An example is a scenario where the transceivers use highly-stable

crystal oscillators and skip CFO estimation to save energy. Under this condition, we
may consider the CFO to be uniformly distributed and independent of the channel.

Another example is a scenario where the receiver performs CFO estimation and com-
pensation in a system with perfect power control. Under this scenario the residual

CFO can be treated as a Gaussian random variable independent of the channel.
For the channel-independent CFO or residual CFO case, BER is obtained by

solving the following integral

Pb (ξ) =

∫ ∫
Pb (ξ|vΔ,h) fv(vΔ)f(h)dvΔdh (3.13)

where fv(vΔ) and f(h) are pdfs of CFO or residual CFO and channel respectively, and

Pb (ξ|vΔ,h) represents the BER conditioned on vΔ and h. In the following sections
3.3.1-3, we consider the uniformly distributed CFO, while in the section 3.3.4 we address

a Gaussian-distributed residual CFO. These can be considered as a generalization of
what is discussed in (Dharmawansa et al. [a] [b], 2006).

3.3.1 AWGN Channel with Uniformly Distributed CFO

For the AWGN channel, we have H = 1√
N

IN . We can simply deduce from (3.10) that

Rk = ckI
′
0 +

N−1∑
l=0,l �=k

clI
′
l−k + n′

k; k = 0, 1, · · · , N − 1. (3.14)
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Now consider the following trigonometric identity used by (Dharmawansa et al. [b],
2006), which is useful in our main derivations.

M−1∏
k=0

cos (φk) ≡ 1

2M−1

2M−1∑
k=1

cos
(
ΦTek

)
(3.15)

where Φ = (φ0 φ1 . . . φM−1)
T , ek is the kth column of a more general M × 2M−1

matrix EM . The kth row of ET
M is essentially the binary representation of the number

2M − k, where zeros are replaced with −1s. For example the matrix EM for the values
of M = 3 can be written as

E3 =

⎛
⎜⎜⎜⎜⎝

1 1 1 1

1 1 −1 −1

1 −1 1 −1

⎞
⎟⎟⎟⎟⎠

ck ∈ {−1, 1} for BPSK modulation and considering the first subcarrier with the trans-

mitted symbol 1, we can derive the characteristic function (CHF) of the real part of
Ro, �(R0) as (Sathananthan and Tellambura, 2001)

φ�(R0)(ω) = exp

{
jω�(I ′0) −

ω2σ2

2

}N−1∏
l=1

cos{ω�(I ′l)} (3.16)

and using (3.15) we can obtain

φ�(R0)(ω) =
1

2N−1
exp

{
jω − ω2σ2

2

} 2N−2∑
l=1

cos{ωvΔP T ek} (3.17)

where P= π
N

[cot( π
N

) cot(2π
N

) . . . cot( (N−1)π
N

)]T and j =
√−1. Using the Euler’s re-

lationship cos (x) = exp (jx)+exp (−jx)
2

and after rearranging the terms of (3.17) we get
(Dharmawansa et al. [b], 2006)

φ�(R0)(ω) =
1

2N−1

2N−2∑
k=1

(
exp

{
jωθk − ω2σ2

2

}
+ exp

{
jωβk − ω2σ2

2

})
(3.18)

where θk=(1 + akvΔ), βk=(1 − akvΔ) and ak=P T ek. A careful observation of (3.18)

reveals that it is the CHF of a mixture of Gaussian density functions. For BPSK
signal constellation, an error occurs if �(R0) < 0 and thus the conditional bit error

probability can be written as

Pb (ξ|vΔ) =
1

2N−1

2N−2∑
k=1

{
Q
(√

2γ(1 + akvΔ)
)

+Q
(√

2γ(1 − akvΔ)
)}

. (3.19)
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Then with the assumption that the CFO vΔ is uniformly distributed over the region
[−b, b], the BER can be written as

Pb (ξ) =
1

2b

∫ b

−b

Pb (ξ|vΔ) dvΔ (3.20)

After some algebraic manipulations, (3.19) gives the bit error probability as (see Ap-

pendix)

Pb (ξ) =
1

b2N−1

[
2N−2∑

k=1,ak �=0

{
λk

ak

Q
(√

2γλk

)
− μk

ak

Q
(√

2γμk

)}

+

2N−2∑
k=1,ak �=0

{ −1

2
√
πγak

e−γλ2
k +

1

2
√
πγak

e−γμ2
k

}
+

2N−2∑
k=1,ak=0

{
2b Q

(√
2γ
)}]

(3.21)

where λk=(1 + akb), μk=(1 − akb), γ=
Eb

N0
= 1

2σ2 and Q(x) is the Gaussian Q-function.

3.3.2 Frequency-flat Rayleigh Fading Channel with Uniformly Distributed

CFO

In the frequency-flat Rayleigh fading case, we have H = (α/
√
N)IN where α is a

zero-mean circularly-symmetric complex Gaussian random variable with a variance of
σ2

R per dimension which is taken to be 0.5. Then, (3.10) becomes

Rk = αckI
′
0 + α

N−1∑
l=0,l �=k

clI
′
l−k + n′

k; k = 0, 1, .., N − 1. (3.22)

Simply compensating for the phase information of complex Gaussian random variable
α, we can obtain the following relation from (3.22).

e−j∠αR0 = |α|c0I ′0 + |α|
N−1∑
l=1

clI
′
l + e−j∠αn′

0 (3.23)

Now we can write the CHF of the term �(e−j∠αR0) and following the same set of

arguments as in the section 3.2.1, we can obtain the conditional bit error probability
as

Pb (ξ|vΔ, α) =
1

2N−1

2N−2∑
k=1

{
Q
(√

2γ|α|(1 + akvΔ)
)

+Q
(√

2γ|α|(1 − akvΔ)
)}

. (3.24)

Note that |α| is Rayleigh distributed with its pdf given by

f(|α|) =
|α|
σ2

R

exp

(
− |α|2

2σ2
R

)
. (3.25)
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Performing the integration 1
2b

∫ b

−b
Pb (ξ|vΔ, α) dvΔ we can get the conditional BER

Pb (ξ|α) as (see Appendix )

Pb (ξ|α) =
1

b2N−1

[
2N−2∑

k=1,ak �=0

{
λk

ak
Q
(√

2γλk|α|
)
− μk

ak
Q
(√

2γμk|α|
)}

+
2N−2∑

k=1,ak �=0

{ −1

2
√
πγak|α|e

−γλ2
k|α|2 +

1

2
√
πγak|α|e

−γμ2
k |α|2

}

+

2N−2∑
k=1,ak=0

{
2b Q

(√
2γ|α|

)}]
(3.26)

Now the dependence of α on the conditional BER Pb (ξ|α) is removed by averaging
Pb (ξ|α) with the pdf of |α|, Thus, after some algebraic manipulations, we obtain the

bit error probability as (Marvin and Alouini, 2005)

Pb (ξ) =
1

2N−1b

2N−2∑
k=1,ak �=0

{
λk

2ak

(
1 − λk

√
2γσ2

R

1 + 2γσ2
Rλ

2
k

)
− μk

2ak

(
1 − μk

√
2γσ2

R

1 + 2γσ2
Rμ

2
k

)

+
−1

2
√

2γσ2
Rak

√
1 + 2γλ2

kσ
2
R

+
1

2
√

2γσ2
Rak

√
1 + 2γμ2

kσ
2
R

}

+
1

2N−1

2N−2∑
k=1,ak=0

(
1 −

√
2σ2

Rγ

1 + 2σ2
Rγ

)
. (3.27)

3.3.3 Frequency-selective Rayleigh Fading Channel with Uniformly Dis-

tributed CFO

In the case of a frequency-selective channel, the received symbol on the kth subcar-

rier is given by (3.10). We assume an L sample-spaced tap-delay-line model for the
channel with the time domain tap coefficients {hl, l = 0, 1, · · · , L − 1} modeled as

zero mean circularly symmetric complex Gaussian random variables having variances

{σ2
hl
} with uniform power delay profile and σ2

h0
+ σ2

h1
+ · · ·+ σ2

hL−1
= 1. Furthermore,

the channel is assumed to be quasi-static. Define αl=
√
NHl for l=0, 1, · · · , N − 1,

α = [α1 α2 · · · αN−1]
T . One very important factor that we should pay our attention

is the correlation between different αi’s. and σ2
n=|α0|2σ2. In the frequency-selective

Rayleigh fading case, we have H = 1√
N
diag[(α0, α1, · · · , αN−1)]. Then, using (3.10)

and considering the first subcarrier with the transmitted symbol 1, we can write

R0 = α0I
′
0 +

N−1∑
l=1

clI
′
lαl + n′

0 (3.28)
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Now taking the real part of (3.28) after the phase of the complex random variable α0

is compensated, yields

�(ᾱ0R0) = |α0|2 +

N−1∑
l=1

�(clI
′
lαlᾱ0) + �(ᾱ0n

′
0) (3.29)

where ᾱ0 = |α0|e−j∠α0 . Hence, we can obtain the conditional CHF of the random
variable �(ᾱ0R0)|α0,α, vΔ as (Dharmawansa et al. [b], 2006)

φ�(ᾱ0R0)|α0,α,vΔ
(ω) =

1

2N−1

2N−2∑
k=1

(
exp

{
jωθk − ω2σ2

n

2

}
+exp

{
jωβk − ω2σ2

n

2

})
(3.30)

where θk=(|α0|2+� (α0P
T
k α
)
), βk=(|α0|2−� (α0P

T
k α
)
), and Pk= diag(I ′1, ..., I

′
N−1)ek.

Hence the conditional BER can be obtained as

Pb (ξ|α0,α, vΔ) =
1

2N−1

2N−2∑
k=1

{
Q

(
|α0|2 + � (α0P

T
k α
)

σn

)
+Q

(
|α0|2 − � (α0P

T
k α
)

σn

)}
(3.31)

Let us define zk=� (α0P
T
k α
)
. It is obvious that the conditional random variable

zk|α0, vΔ is Gaussian with mean and variance to be determined.

Now we have the following (Kay , 1993 ) :

C = E
{(
α0 αT

)T (
α0 αH

)}
=

⎛
⎜⎝ cα0α0 CH

αα0

Cαα0 Cαα

⎞
⎟⎠ = NFLChF

H
L

E{α|α0} = α0c
−1
α0α0

Cαα0 (3.32)

Cα|α0 = Cαα − c−1
α0α0

Cαα0C
H
αα0

where Ch is the L×L time-domain channel covariance matrix, cα0αm = E{α0αm}, 0 ≤
l,m ≤ N −1, and Cαα0 = [cα1α0cα2α0 . . . cαN−1α0 ]

T . Then we can derive the conditional

mean and variance of the random variable zk (Dharmawansa et al. [b], 2006; Miller

K. S., 1969) as,

E {zk|α0, vΔ}=
πvΔ

N
|α0|2c−1

α0α0
� (V T

k Cαα0

)
=
πvΔ

N
|α0|2a′k (3.33)

and

Var (zk|α0, vΔ) =
π2vΔ

2

2N2
|α0|2V T

k Cα|α0V k =
π2vΔ

2

2N2
|α0|2bk (3.34)

where a′k= c−1
α0α0

� (V T
k Cαα0

)
and bk=V T

k Cα|α0V k . Here Pk and Vk are related by
Pk=

πvΔ

N
Vk. Rearranging the random variables inside the Q function in (3.31) yields

(Dharmawansa et al. [b], 2006)

Pb (ξ|α0,α, vΔ) =
1

2N−1

2N−2∑
k=1

{
Q (μ+k + λkYk) +Q (μ−k − λkYk)

}
(3.35)

where Yk ∼ N (0, 1), μ+k=
|α0|
σ

(
1 + π

N
vΔa

′
k

)
, μ−k=

|α0|
σ

(
1 − π

N
vΔa

′
k

)
and λk=

√
bk

2σ2
πvΔ

N
.
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Then the BER conditioned on α and vΔ can be obtained as (Verdu, 1998)

Pb (ξ|α0, vΔ)=
1

2N−1

2N−2∑
k=1

{
Q

(
μ+k√
1 + λ2

k

)
+Q

(
μ−k√
1 + λ2

k

)}
. (3.36)

Further manipulating and averaging (3.36) with respect to α0 give

Pb (ξ|vΔ) =
1

2
− 1

2N

2N−2∑
k=1

{
M (1 +mkvΔ)

2
√
p + qkvΔ + rkvΔ

2
− M (1 −mkvΔ)

2
√
p− qkvΔ + rkvΔ

2

}
(3.37)

whereM=
√

2σ2
Rγ, γ is the same as defined before, mk=

π
N
a′k, p=(1+2σ2

Rγ), qk=
4σ2

Rγπa′
k

N
,

and rk=
π2

N2γ(bk + a′2k). Now removing the dependence of random CFO in (3.37), we

obtain the BER as

Pb (ξ) =
1

b2N

2N−2∑
k=1,mk �=0

[
2b−[A]b−b−[B]b−b

]
+

1

b2N

2N−2∑
k=1,mk=0

[
2b−

[ M√
rk

sinh−1
(vΔ

L′

)]b
−b

]

(3.38)

where

A =
Mmk

2rk

[√
p+ qkvΔ + rkvΔ

2
]

+
[M(1 − qkmk

2rk
)

2
√
rk

sinh−1
(vΔ

L′ +
qk

2rkL′

)]
(3.39)

B =
−Mmk

2rk

[√
p− qkvΔ + rkvΔ

2
]

+
[M(1 − qkmk

2rk
)

2
√
rk

sinh−1
(vΔ

L′ −
qk

2rkL′

)]
(3.40)

L′ =

√
p

qk
− q2

k

4r2
k

(3.41)

and L′ is always positive.

3.3.4 AWGN and Frequency-flat Rayleigh Fading Channels with Perfect

Power Control

To evaluate (3.13), we should know the pdf of vΔ. As far as maximum likelihood (ML)
estimators are concerned, we can observe the nature of the pdf of vΔ conditioned on the

channel. Asymptotic properties of the maximum likelihood estimate (MLE) indicate
that if the regularity conditions are satisfied, then the MLE of the unknown parameter

θ is asymptotically Gaussian-distributed as

θ̂ ∼ N (θ, I−1(θ)) (3.42)

where I(θ) is the Fisher information matrix evaluated at the true value of the unknown
parameter (Kay, 1993). Hence, it is reasonable to use the conditional pdf of vΔ as

fv(vΔ|h) = N (0, I−1(θ)) = N (0, CRB|h) (3.43)
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where CRB|h is the Cramer-Rao lower bound conditioned on the CIR. For a training
signal consisting of (P + 1) identical parts, each having L samples, and if the CFO

estimation is based on PL samples (excluding the cyclic prefix with L samples), the
CRB conditioned on the channel h is given by (Hlaing Minn et al. [b], 2006)

CRB|h =
3N3σ2

π2PL3(P 2 − 1)hHSHSh
. (3.44)

For most of the training designs (Hlaing Minn et al. [b] [c], 2006), we have
SHS=EavI, and hence

CRB|h =
3N3σ2

π2PL3(P 2 − 1)EavhHh
. (3.45)

If we assume perfect power control, we can say hHSHSh is constant and hence for

a receiver with a CFO estimator, the pdf of the residual CFO can be considered as

a Gaussian pdf independent of the channel resulting simply f(vΔ|h) = f(vΔ). If we
consider arbitrary training signal samples {sk}, the CRB for v derived for the ML joint

estimation of v and h is given by (Morelli and Mengali, 2000)

CRB|h =
N2σ2

4π2hHSHΛ(IN − B)ΛSh
(3.46)

where

B=S(SHS)−1SH (3.47)

and Λ = diag{0, 1, . . . , N − 1}. In our derivation, we use (3.46).

3.3.4.1 AWGN channel

For the AWGN channel, (3.13) simply reduces to a single integral evaluation as we do
not have to average with respect to the channel. The signal model for AWGN channel

can be obtained from (3.7) as
r = Γ(v)s + w (3.48)

where s = [s0s1 . . . sN−1]
T is the training signal vector. The CRB of the CFO estimation

for the signal model in (3.48) is given by (Hlaing Minn and Xing, 2005)

CRB =
N2σ2

4π2sHΛ2s
= Ω (3.49)

Then we evaluate the BER as

Pb (ξ) =
1

2N−1

2N−2∑
k=1

2E

{
Q
(√

2γ +
√

2γakvΔ

)}
(3.50)
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where the expectation is with respect to vΔ. Re-arranging the random variables inside
the Q function in (3.50) gives

Pb (ξ) =
1

2N−1

2N−2∑
k=1

2E

{
Q

(√
2γ +

√
2γΩak

vΔ√
Ω

)}

=

2N−2∑
k=1

2E

{
Q
(√

2γ +
√

2γΩakX
)}

(3.51)

where X ∼ N (0, 1). Then, using (Verdu, 1998) we obtain the BER as

Pb (ξ) =
1

2N−1

2N−2∑
k=1

2Q

(√
2γ

1 + 2γΩa2
k

)
. (3.52)

3.3.4.2 Frequency-flat Rayleigh fading channel

When the frequency-flat fading channel is considered, (3.46) can be reduced to

CRB|α =
2N2(

8π2sHΛ(IN − B)Λs
) σ2

|α0|2
=

Λ

|α0|2
(3.53)

where α0 is complex Gaussian with variance σ2
R per dimension. Under the perfect

power control, we can equivalently consider that |α0|2 is constant while fixing s. Thus

we assume the pdf of residual CFO to be

fv(vΔ|α0) = fv(vΔ) = N (0,Λ). (3.54)

Using (3.13), (3.24), (3.54) and the same mathematical arguments used in deriving

(3.52), we obtain the BER for the frequency-flat Rayleigh fading channel under perfect
power control as

Pb (ξ) =
1

2N−1

2N−2∑
k=1

2Q

(√
2γ

1 + 2γΛa2
k

)
. (3.55)

3.4 Performance Analysis with Channel-Dependent Residual CFO for

BPSK OFDM Systems

For the channel-dependent residual CFO scenario, the bit error probability can be
expressed as

Pb (ξ) =

∫ ∫
Pb (ξ|vΔ,h) fv(vΔ|h)f(h)dvΔdh. (3.56)

The closed form solution to (3.56) for the frequency-flat Rayleigh fading channel is

presented in the following. However, solving the above problem for the frequency-

selective case appears to be intractable and hence we adopt an alternative approach
for the frequency-selective case which will be presented in Section 3.4.
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3.4.1 Frequency-flat Rayleigh Fading Channel

The variance of the conditional Gaussian random variable vΔ|α for the frequency-
flat Rayleigh fading channel is given by (3.53) for the MLE estimator (Morelli and

Mengali, 2000) we use in this paper. Manipulating the equations (3.24), (3.25), (3.43),
(3.53) and (3.56) yields the BER conditioned on α as

Pb (ξ|α) =
1

2N−1

2N−2∑
k=1

2Q

(
μ√

1 + η2
k

)
(3.57)

where μ=
√

2γ|α| and ηk=
√

2γλak. Further averaging with respect to the Rayleigh
variable |α|, we obtain the BER as

Pb (ξ) =
1

2N−1

2N−2∑
k=1

⎧⎨
⎩1 −

√√√√ 2γ
1+2γλa2

k
σ2

R

1 + 2γ
1+2γλa2

k
σ2

R

⎫⎬
⎭ . (3.58)

3.5 An Alternative Approach to BER Analysis in Frequency-Selective

Channel for BPSK OFDM Systems

Since the BER calculation in the frequency-selective fading channel seems to be in-

tractable using the procedure used earlier, we propose the following method with re-
laxed assumptions and we denote this as an analysis with relaxed assumptions. In this

analytical development we assume that vΔ and h are independent and vΔ is uniformly
distributed. Even though these assumptions are not entirely justifiable for the MLE1

estimator in (Morelli and Mengali, 2000), analytical results so obtained closely
match with the simulation results. We applied this approach for both frequency-flat

and frequency-selective scenarios as follows.

3.5.1 Frequency-Flat Rayleigh Fading Channel

The estimates of v and h0 can be written as (Morelli and Mengali, 2000)

v̂ = argṽ max
{
rHΓ(ṽ)BΓH(ṽ)r

}
(3.59)

ĥ0 = (SHS)−1SHΓH(v̂)r (3.60)

where B is given in (3.47) and S = s since L = 1. Substituting (3.7) into (3.60)

and using the approximation e
−j2πlvΔ

N 
(1 − j2πlvΔ

N
) for very small vΔ, we can find an

approximation for ĥ0 as

ĥ0 ≈
[
1 − j2πvΔ

N2

N−1∑
k=1

k|sk|2
]
h0 + wnew (3.61)

where wnew is a zero-mean circularly-symmetric complex Gaussian variable with vari-

ance σ2

N
per dimension. For simplicity we define q=

[
1 − j2πvΔ

N2

∑N−1
k=1 k|sk|2

]
. From
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(3.22) we have

R0 =
[
1 +

πvΔ

N

N−1∑
l=1

clal

]
h0 + n′

0; l = 0, 1, · · · , N − 1 (3.62)

where we have used I ′l=
πvΔ

N
al for l �= 0 and I ′0=1 under very small vΔ assumption, and

c0=1. Let p=
[
1+ πvΔ

N

∑N−1
l=1 clal

]
. Now we want to find Pr

[
�(R0

ĥ0
)<0|c0=1

]
. Applying

the results from Appendix B of (Proakis, 1995), we obtain

Pb(ξ|vΔ, c1, c2, ...cN−1) = 1 − v2

v1 + v2

(3.63)

where

v1=

√
w2 +

1

4(μĥ0ĥ0
μR0R0 − |μĥ0R0

|2) − w (3.64)

v2=

√
w2 +

1

4(μĥ0ĥ0
μR0R0 − |μĥ0R0

|2) + w (3.65)

w =
μĥ0R0

+ μ∗
ĥ0R0

4(μĥ0ĥ0
μR0R0 − |μĥ0R0

|2) (3.66)

and μXY =1
2
E
[
(X − E{X})(Y −E{Y })∗

]
. Furthermore, we can derive the following

statistical relationships conditioned on vΔ and all data symbols (c1 c2 · · · cN−1):

μR0R0 =
|p|2σ2

h0

2
+ σ2, μĥ0ĥ0

=
|q|2σ2

h0

2
+ σ2

N
, μĥ0R0

=
p∗qσ2

h0

2
, μR0ĥ0

=
q∗pσ2

h0

2
, w =

�(pq∗)

2σ2(
|p|2
N

+|q|2+ 2σ2

Nσ2
h0

)
where σ2

h0
is the variance of h0. After some algebraic manipulations,

we can show that

Pb(ξ|vΔ, c1, c2, ...cN−1) =
1

2
− a′1 + b′1vΔ + c′1vΔ

2√
a′3 + b′3vΔ + c′3vΔ

2 + d′3vΔ
3 + e′3vΔ

4
(3.67)

where a′1=0.5, b′1=− πa
2N

, c′1=−π2gλ
N3 , a′2=

2σ2

σ2
h0

(1+ 1
N

+ 2σ2

Nσ2
h0

), b′2=−2σ2

σ2
h0

(2πa
N2 ), c′2=

2σ2

σ2
h0

[
π2

N3 (a
2+

g2)+ 4π2λ2

N4

]
, a′3=(4a′1

2+a′2), b
′
3=(8a′1b

′
1+b

′
2), c

′
3=
[
4(b′1

2+2a′1c
′
1)+c

′
2

]
, d′3=8b′1c

′
1, e

′
3=4c′1

2,

a=
∑N−1

l=1 cl cot(πl
N

), λ=
∑N−1

k=1 k|sk|2 and g=
∑N−1

l=1 cl. Averaging (3.67) over all possible

data symbol combinations and vΔ yields

Pb(ξ) =
1

2N−1

∑
c1∈{−1,1}

∑
c2∈{−1,1}

.......
∑

cN−1∈{−1,1}

1

2b
×

[∫ b

−b

1

2
− a1

′ + b1
′vΔ + c1

′vΔ
2√

a3
′ + b3

′vΔ + c3′vΔ
2 + d3

′vΔ
3 + e3′vΔ

4
dvΔ

]
. (3.68)

In general, closed form solution does not exist for (3.68). But a closed form solution can
be derived ignoring the terms with coefficients d3

′ and e3
′. This is really the case when

vΔ → 0. However, at high SNR this is not acceptable and we have to use numerical
integration techniques given in software packages such as MatLab and Mathematica.
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3.5.2 Frequency-selective Rayleigh fading channel

The estimate of the channel co-efficient vector is obtained as (Morelli and Mengali,
2000)

ĥ =
[
ĥ0 ĥ1 · · · ĥL−1

]T
= (SHS)−1SHΓH(v̂)r (3.69)

where S, Γ, r are as defined in (3.7) and v̂ is the estimate of the normalized CFO.
Denoting α̂e as the N -point DFT of ĥ, i.e., α̂e = [α̂0 α̂1 . . . α̂N−1]

T =
√
NFLĥ, and

after some matrix manipulations, we obtain

α̂0 =
1√
N

1T
NAeF

H
[
α0 αT

]T
+ 1T

NBew (3.70)

where

Ae =

⎛
⎜⎝ A 0L×(N−L)

0(N−L)×L 0(N−L)×(N−L)

⎞
⎟⎠

Be = [((SHS)−1SH)T , 0N×(N−L)]
T

A = (SHS)−1SHΓH(vΔ)S.

From (14) when c0 = 1, we can deduce that

R0 = α0 + aP T α + n0
′ (3.71)

where a=πvΔ

N
, P= [c1a1 c2a2 · · · cN−1aN−1]

T , and we have used (3.12) with I ′l=aal for
l �= 0 and I ′0=1 under very small vΔ assumption. Here we apply the same procedure

which was used to derive (3.68). The random variables α̂0 and R0 conditioned on vΔ

and the data sequence [c1 c2 · · · cN−1]
T are complex Gaussian. Hence we can derive

the following statistics:
μR0R0 = A1 +B1vΔ + C1v

2
Δ (3.72)

where A1=
1
2
[2σ2 + cα0α0 ], B1=

π
N
�(CH

αα0
P
)
, C1=

π2

2N2

[
P T CααP

]
, and

μα̂0α̂0 =
1

2

[
1T

NAeChA
H
e 1N + 2σ21T

NBeB
H
e 1N

]
. (3.73)

With the assumption of independent and identically distributed (iid) time-domain

channel coefficients and using the relation e
−j2πlvΔ

N ≈(1− j2πlvΔ

N
) for very small vΔ values,

we can deduce from (3.73) that

μα̂0α̂0 =
1

2
+
r

2
+

1

2L
μv2

Δ (3.74)

where r=2σ21T
NBeB

H
e 1N , μ=

∑L−1
i=0 |∑L−1

m=0 qmi|2, qmi=
2πj
N

∑N−1
k=0 k

[
(SHS)−1SH

]
m,k

×[
S
]
k,i

. Let us denote A2=
1
2
, B2=

r
2
, C2=

1
2L
μ, D=

[
cα0α0 CH

αα0

]
, and E=P T [Cαα0 Cαα]

for the notational simplicity. Then

μR0α̂0 = A3 +B3vΔ + C3v
2
Δ (3.75)
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where A3=
λ2

2
√

N
, B3=

[
μ2

2
√

N
+ πλ3

2
√

NN

]
, C3=

πμ3

2
√

NN
, λ2=

∑L−1
m=0 [DF ]1,m, μ2=

∑L−1
m=0

(
b∗m ×

[DF ]1,m

)
, λ3=

∑L−1
m=0 [EF ]1,m, μ3=

∑L−1
m=0

(
[EF ]1,m b

∗
m

)
and bm=

∑L−1
k=0 qkm. Further-

more, we can derive the corresponding w in (3.66) as

w =
μα̂0R0 + μ∗

α̂0R0

4(μα̂0α̂0μR0R0 − |μα̂0R0 |2)
=
K

M
(3.76)

whereK=(g1+g2vΔ+g3v
2
Δ),M=4

[
(A1A2+A1B2−|A3|2)+(B1A2+B1B2−2�(A3B

∗
3))vΔ

+ (A1C2 + C1B2 + C1A2 − |B3|2 − 2�(A3C
∗
3 ))v2

Δ + (B1C2 − 2�(B3C3))v
3
Δ + (C1C2 −

|C3|2)v4
Δ

]
, g1=2�(A3), g2=2�(B3) and g3=2�(C3). After some algebraic manipulations

and using (3.73)-(3.76), we can come up with the following conditional error probability

(Proakis, 1995)

Pb(ξ|vΔ, c1, c2, ...cN−1) =
1

2
− g1 + g2vΔ + g3vΔ

2

2
√
g4 + g5vΔ + g6vΔ

2 + g7vΔ
3 + g8vΔ

4
(3.77)

where g4=g
2
1 + 4(A1A2 + A1B2 − |A3|2), g5=2g1g2 + 4(B1A2 + B1B2 − 2�(A3B

∗
3)),

g6=(g2
2 + 2g1g3) + 4(A1C2 + C1B2 + C1A2 − |B3|2 − 2�(A3C

∗
3)), g7=2g2g3 + 4(B1C2 −

2�(B3C3)), and g8=g
2
3+4(C1C2−|C3|2). Averaging (3.77) over all possible data symbol

combinations and vΔ yields

Pb(ξ) =
1

2N−1

∑
c1∈{−1,1}

∑
c2∈{−1,1}

.......
∑

cN−1∈{−1,1}

1

2b
×

[∫ b

−b

1

2
− g1 + g2vΔ + g3vΔ

2

2
√
g4 + g5vΔ + g6vΔ

2 + g7vΔ
3 + g8vΔ

4
dvΔ

]
. (3.78)

We have to use numerical integration techniques as no closed form solutions are avail-

able to evaluate (3.78).
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3.6 Results and Discussion

3.6.1 Channel-Independent CFO or Residual CFO for BPSK OFDM Sys-

tems

Considering the case where CFO is uniformly distributed and independent of the chan-
nel we simulate an OFDM system with N = 8 and the normalized CFO is uniformly

distributed over [−b, b] with b = 0.05 and b = 0.1.

Fig. 3.2 shows the BER performance in the AWGN channel. The simulation
results for b = 0.05 case match well with those calculated in (3.21) but there is a slight

discrepancy for b = 0.1 case especially at low BER values (say below 10−3). This
discrepancy is simply due to the fact that the small CFO assumption in the analytical

development is not closely matched by the uniform CFO with b = 0.1, and at these
low BER values the CFO has a more dominant effect on BER than the noise does. As

long as the CFO is considerably small, our analytical expressions yield highly accurate
results. The results for frequency-flat and frequency-selective Rayleigh fading channels
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Figure 3.2: BER curves for AWGN channel with N=8 subcarriers and b=0.1, b=0.05

for BPSK OFDM Systems.

are presented in Fig. 3.3 and 3.4, respectively. The simulation results agree well with
our analytical results for both b = 0.05 and b = 0.1 cases in both channels, confirming

the accuracy of our analytical expressions. Here we can see that even for the case where
b = 0.1 descrepencies are not significant. The main reason for this is the dominance of

randomness of channel parameters compared to the rndomness of CFO. That is even
though the appoximated CFO induces an error it is overwhelmed by the channel thus

minimising the difference of effect caused by exact ICI term (corresponds to simulated
points) and approximated ICI term (corresponds to analytical curve).
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Figure 3.3: BER curves for the frequency-flat Rayleigh fading channel with N=8 sub-

carriers and b=0.1, b=0.05 for BPSK OFDM Systems.
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Figure 3.4: BER curves for the frequency-selective Rayleigh fading channel with N=8
subcarriers, L=5 CIR tap coefficients and b=0.1, b=0.05 for BPSK OFDM

Systems.
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When the channel-independent residual CFO is considered under perfect power
control, the residual CFO is modeled as a Gaussian random variable. Simulation in

this section is performed under two settings:

1. Setting I : The residual CFO is directly generated from a Gaussian density

with the variance determined by the CRB conditioned on the channel. A CFO

estimator is not used. The purpose of this setting is to verify the theoretical
derivation.

2. Setting II : We apply CFO estimation and compensation at the receiver to show
the accuracy of our analytical results for practical systems. For the frequency-flat

fading channel, we use the CFO estimator (MLE1) from (Morelli and Mengali,
2000). For the AWGN channel, we can derive the ML CFO estimator based on

the signal model in (3.48) as

v̂ = argṽ max�
{

N−1∑
n=0

r[n]s∗[n] exp

(−j2πṽn
N

)}
. (3.79)

We use an OFDM system with N = 20 in a quasi-static channel. In our simula-
tion we have one OFDM preamble/training symbol followed by only one OFDM data

symbol. In our analytical derivation we did not consider the CFO-induced, symbol-
index-dependent phase shift of exp(j2πvΔm(N+Ng)/N) where m is the OFDM symbol

index and Ng is the number of guard samples. We simply assume that every symbol
is phase synchronized so that we can neglect the above phase shift.
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Figure 3.5: BER curves for the AWGN channel (setting I) with N=20 subcarriers for

BPSK OFDM Systems.
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For the AWGN channel, the simulation and analytical results for the Setting I and
II are presented in Fig. 3.5 and 3.6, respectively. We observe an excellent match be-

tween the analytical and simulation results in both figures which confirms the accuracy
of our derivation and the applicability of our results to practical systems with a CFO

estimator.
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Figure 3.6: BER curves for the AWGN channel (setting II) with N=20 subcarriers for
BPSK OFDM Systems.

The results for the frequency-flat Rayleigh fading channel are shown in Fig. 3.7

and 3.8 for the Setting I and II, respectively. A marginal mismatch between the

simulation and the analytical results is observed for both settings at low SNR values.
This slight mismatch can be ascribed to the fact that the small vΔ approximation used

in the analytical derivation is not justified by occasional large CFO estimation errors
(outliers) which occur more often at lower SNR values in the simulation. Note that in

practice if the channel is in deep fade the receiver will not be able to detect the signal.
Hence, the above marginal mismatch is not a concern for practical systems. Also note

that we can easily apply our analytical derivation to periodic training signals by using
the CRB in (3.44).
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Figure 3.7: BER curves for the frequency-flat Rayleigh fading channel (setting I) with

perfect power control and N=20 subcarriers for BPSK OFDM Systems.
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Figure 3.8: BER curves for the frequency-flat Rayleigh fading channel (setting II) with
perfect power control and N=20 subcarriers for BPSK OFDM Systems.
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3.6.2 Channel-Dependent Residual CFO for BPSK OFDM Systems
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Figure 3.9: BER curves for the frequency-flat Rayleigh fading channel (setting I) with
no power control and N=20 subcarriers for BPSK OFDM Systems.
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Figure 3.10: BER curves for the frequency-flat Rayleigh fading channel (setting II)

with no power control and N=20 subcarriers for BPSK OFDM Systems.
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In our analytical derivation corresponding to this section, the residual CFO is
modeled as a Gaussian random variable conditioned on the channel realization. Here

we use the same simulation settings as described in the previous section. The results
for the frequency-flat Rayleigh fading channel are shown in Fig. 3.9 and 3.10 for the

Setting I and II, respectively. Simulation results closely match the analytical curves

verifying the accuracy and practical applicability of our BER analysis.

3.6.3 Channel-Dependent Residual CFO (With Relaxed Assumptions) for

BPSK OFDM Systems

This section corresponds to the section 3.4. In the simulation, we apply the MLE1

estimator from (Morelli and Mengali, 2000) and hence the residual CFO is channel-
dependent. However, in the analytical derivation related to this section, we assume

that the residual CFO is uniformly distributed over the range [−b, b] and is independent
of the channel. We set the variance of the uniform residual CFO of the analytical

derivation to be the same as the mean-square error (MSE) of the practical estimator

in the simulation which gives the relation b=
√

3MSE. Note that the MSE of the CFO
estimator depends on the SNR (Eb/N0) and hence we set b according to the MSE

at the SNR we are evaluating. Fig. 3.11 shows the analytical BER results and the
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Figure 3.11: BER curves for the frequency-flat Rayleigh fading channel (N=8) and
the frequency-selective Rayleigh fading channel (N=16); (with relaxed

assumptions for the analytical curves) for BPSK OFDM Systems.

simulation results obtained with the CFO and channel estimation in frequency-flat and

frequency-selective Rayleigh fading channels for OFDM systems with N=8 and N=16.
The results show a close match between the simulated and analytical results even with

the relaxed assumptions we made in the derivations of (3.68) and (3.78). In particular,
the analytical results based on the relaxed assumption for the frequency-selective fading

channel is quite appealing since the exact BER analysis appears to be intractable.
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CHAPTER 4

SER ANALYSIS OF QUADRATURE AMPLITUDE MODULATED

OFDM SYSTEMS WITH RANDOM RESIDUAL FREQUENCY

OFFSET

4.1 Introduction

In this chapter, we derive symbol error rate expressions for OFDM systems with resid-
ual carrier frequency offset. The CFO or residual CFO is treated as a random pa-

rameter in this study. In particular, two scenarios, channel-independent as well as

channel-dependent random CFO or residual CFO are considered. We derive SER ex-
pressions for 4-QAM OFDM systems in the cases of additive white Gaussian noise and

frequency-flat Rayleigh fading channels. The simulation results are provided to verify
the accuracy of the new SER expressions.

4.2 Performance Analysis with Channel-Independent CFO or Residual

CFO for 4-QAM OFDM Systems

As we discussed previously in (3.13) for the channel-independent CFO or residual CFO
case in 4-QAM, SER on a particular (say 0th) subcarrier of the ith OFDM symbol

conditioned on the other N − 1 sub-carrier symbols is obtained by solving

Ps (ξ|ai) =

∫ ∫
Ps (ξ|vΔ,h,ai) fv(vΔ)f(h)dvΔdh (4.1)

where fv(vΔ) and f(h) are pdfs of CFO or residual CFO and channel respectively, and

Ps (ξ|vΔ,h,ai) represents the SER conditioned on vΔ, h and ai. Here ai = [c1,i c2,i · · ·
cN−1,i]

T . In the following sections 4.2.1 and 4.2.2, we consider the uniformly distributed

CFO, while in the section 4.2.3 we address a Gaussian-distributed residual CFO. A
square M-QAM modulation can be considered as a combination of two quadrature

(say I and Q)
√
M -PAM (pulse amplitude modulation) schemes, each with half the

total power. Since a correct QAM decision is made only when a correct decision
is independently made on each of these PAM modulations, then the symbol error

probability for a square QAM can be expressed as (Marvin and Alouini, 2005).

Ps (error)|M−QAM,Es = PI
√

M, Es
2

+ PQ
√

M, Es
2
− PI

√
M, Es

2
× PQ

√
M, Es

2
(4.2)

where PIM,Es
=

[
Ps (error)|M−PAM,Es

]
I

and PQ =

[
Ps (error)|M−PAM,Es

]
Q

. This

holds true even for the case when the symbol error probability is conditioned on some
random parameters. Writing the equation (3.10) with some slight modifications to the

symbols ck’s, we can express the received symbol on the kth sub-carrier for M-PAM
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OFDM as

Rk =
√
εsNAkHkI

′
0 +

√
εsN

N−1∑
l=0,l �=k

AlHlI
′
l−k + n′

k; k = 0, 1, .., N − 1 (4.3)

where εs = 3Es

M2−1
, Am ∈ {−(M − 1)..− 1, 1..(M − 1)} and Es is the symbol energy.

Now consider the M-QAM OFDM signal with the signal points ck = cIk + jcQk with

cIk, cQk ∈ {−(M − 1)..− 1, 1..(M − 1)}. Thus we can write the equivalent two quadra-
ture components of M-QAM signal on the I and Q-axis of the complex plane for the

zeroth sub-carrier as

YI =
√
εs|α0|�(c0I

′
0) +

√
εsN

N−1∑
l=1

�(ζclHlI
′
l) + nI

YQ =
√
εs|α0|�(c0I

′
0) +

√
εsN

N−1∑
l=1

�(ζclHlI
′
l) + nQ (4.4)

where YI = �(R0), YQ = �(R0), α0 =
√
NH0, ζ = e−j∠α0 and nI , nQ are i.i.d. real

Gaussian random variables with zero mean and variance σ2.

4.2.1 AWGN Channel with Uniformly Distributed CFO

For the AWGN channel, (4.4) reduces to

YI =
√
εs�(c0I

′
0) +

√
εs

N−1∑
l=1

�(clI
′
l) + nI

YQ =
√
εs�(c0I

′
0) +

√
εs

N−1∑
l=1

�(clI
′
l) + nQ. (4.5)

For an M-QAM OFDM system with M = 4 and a particular symbol c∗0 on the
zero-th sub-carrier, we have PIM,Es

|ai, vΔ, c
∗
0 = PIM,Es

|ai, vΔ and PQM,Es
|ai, vΔ, c

∗
0 =

PQM,Es
|ai, vΔ. Then we can derive PIM,Es

|ai, vΔ and PQM,Es
|ai, vΔ using (4.5) as fol-

lows (Marvin and Alouini, 2005. eq.(8.3)):

PIM,Es
|ai, vΔ =

M − 1

M
Q

(√
εs

[�(c∗0I
′
0) − πvΔ

N
�(Xi)]

σ

)

+
M − 1

M
Q

(√
εs

[�(c∗0I
′
0) + πvΔ

N
�(Xi)]

σ

)
(4.6)

PQM,Es
|ai, vΔ =

M − 1

M
Q

(√
εs

[�(c∗0I
′
0) − πvΔ

N
�(Xi)]

σ

)

+
M − 1

M
Q

(√
εs

[�(c∗0I
′
0) + πvΔ

N
�(Xi)]

σ

)
(4.7)

where Xi=
∑N−1

l=1 cl,i[− cot(πl
N

)+j]. Without loss of generality, for the 4-QAM case c∗0 is

taken to be equal to (1+ j). Using (4.2), (4.6) and (4.7), we can derive the conditional
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SER for 4-QAM OFDM as

Ps (ξ|ai, vΔ) =
1

2
Q
(√

2γ[1+αIivΔ]
)

+
1

2
Q
(√

2γ[1+βIivΔ]
)

+
1

2
Q
(√

2γ[1−αQivΔ]
)

+
1

2
Q
(√

2γ[1−βQivΔ]
)
−1

4
Q
(√

2γ[1+αIivΔ]
)
Q
(√

2γ[1−αQivΔ]
)

−1

4
Q
(√

2γ[1+αIivΔ]
)
Q
(√

2γ[1−βQivΔ]
)

−1

4
Q
(√

2γ[1+βIivΔ]
)
Q
(√

2γ[1−αQivΔ]
)

−1

4
Q
(√

2γ[1+βIivΔ]
)
Q
(√

2γ[1−βQivΔ]
)

(4.8)

where αIi = π
[

N−1
N

− �(Xi)
N

]
, βIi = π

[
N−1

N
+ �(Xi)

N

]
, αQi = π

[
N−1

N
− �(Xi)

N

]
, βQi =

π
[

N−1
N

+ �(Xi)
N

]
and 2γ = 2Eb

N0
= Es

N0
. Eb and Es represent bit energy and symbol energy,

respectively, and the complex noise variance is denoted by N0 = 2σ2. Now we define

I1(μ, λ) =

∫
Q (μ+ λvΔ) fv(vΔ)dvΔ (4.9)

I2(μ, λ1, λ2) =

∫
Q (μ+ λ1vΔ)Q (μ+ λ2vΔ) fv(vΔ)dvΔ (4.10)

I3(μ, λ, ω1, ω2) =

∫ ω2

ω1

Q (μ+ λx) e−x2/2dx (4.11)

where fv(vΔ) is the distribution of normalized CFO or residual CFO and in this section

it is considered to be a uniform distribution over [−b, b] and μ is non-zero. Then we
can derive

I1(μ, λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q (μ) if λ = 0

1
2bλ

[
(μ+ λx)Q (μ+ λx)

− 1√
2π
e−

(μ+λx)2

2

]b
−b

if λ �= 0

(4.12)

I2(μ, λ1, λ1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
gI2(x, μ, λ1, λ2)

]b
−b

+I3 if λ1, λ2 �= 0

I1(μ, λ1).I1(μ, λ2) else

(4.13)

where

I3 =
μ(λ1 − λ2)√

8πλ1λ2b
I3

(
μ(λ1 − λ2)

λ1
,
λ2

λ1
, μ− λ1b, μ+ λ1b

)
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and
[
g(x)

]b
−b

= g(b) − g(−b) and g is any arbitrary function defined over [−b, b].
gI2(x, μ, λ1, λ2) is given by

gI2(x, μ, λ1, λ2) =
1

2bλ2

(
μ+ λ2x

)
Q
(
μ+ λ2x

)
Q
(
μ+ λ1x

)−
1√

8πλ2b
Q
(
μ+ λ1x

)
exp

(−(μ + λ2x)
2

2

)
− 1√

8πλ1b
Q
(
μ+ λ2x

)
exp

(−(μ+ λ2x)
2

2

)

+
(λ1 + λ2)√

8π(λ2
1 + λ2

2)λ1λ2b
exp

(−μ2(λ1 − λ2)
2

2(λ2
1 + λ2

2)

)
Q

(
μ(λ1 + λ2)√
λ2

1 + λ2
2

+
√
λ2

1 + λ2
2x

)
. (4.14)

Using (4.12) and (4.13), we can obtain the SER conditioned on ai which can be given
as

Ps (ξ|ai) =
1

2
I1(
√

2γ,
√

2γαIi) +
1

2
I1(
√

2γ,
√

2γβIi) +
1

2
I1(
√

2γ,−
√

2γαQi)

+
1

2
I1(
√

2γ,−
√

2γβQi)−1

4
I2(
√

2γ,
√

2γαIi,−
√

2γαQi)−1

4
I2(
√

2γ,
√

2γαIi,−
√

2γβQi)

− 1

4
I2(
√

2γ,
√

2γβIi,−
√

2γαQi) − 1

4
I2(
√

2γ,
√

2γβIi,−
√

2γβQi). (4.15)

Averaging over all ai combinations leads to the SER

Ps (ξ) =
1

22(N−1)

∑
i

Ps (ξ|ai) (4.16)

where
∑

i ≡
∑

c1∈A
∑

c2∈A ....
∑

cN−1∈A and A =
{
1 + j, 1 − j,−1 + j,−1 − j

}
.

4.2.2 Frequency-Flat Rayleigh Fading Channel with Uniformly Distrib-

uted CFO

When the frequency flat Rayleigh fading is concerned, the equivalent quadrature com-
ponents in (4.4) reduce to

YI =
√
εs|α0|�(c0I

′
0) +

√
εs|α0|

N−1∑
l=0

�(ζclI
′
l) + nI

YQ =
√
εs|α0|�(c0I

′
0) +

√
εs|α0|

N−1∑
l=0

�(ζclI
′
l) + nQ. (4.17)

Here we use the distribution of |α0|

fα0(|α0|) =
|α0|
σ2

R

exp
(− |α0|2

2σ2
R

)
where α0 is a zero-mean complex Gaussian random variable with a variance of σ2

R per

dimension. For the notational simplicity we define the following integrals Following
the same set of arguments we can easily derive the conditional SER, Ps

(
ξ|ai, vΔ, |α0|

)
,
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replacing
√

2γ in (4.8) with
√

2γ|α0| as

Ps

(
ξ|ai, vΔ, |α0|

)
=

1

2
Q
(√

2γ|α0|[1+αIivΔ]
)

+
1

2
Q
(√

2γ|α0|[1+βIivΔ]
)

+
1

2
Q
(√

2γ|α0|[1−αQivΔ]
)

+
1

2
Q
(√

2γ|α0|[1−βQivΔ]
)

−1

4
Q
(√

2γ|α0|[1+αIivΔ]
)
Q
(√

2γ|α0|[1−αQivΔ]
)

−1

4
Q
(√

2γ|α0|[1+αIivΔ]
)
Q
(√

2γ|α0|[1−βQivΔ]
)

−1

4
Q
(√

2γ|α0|[1+βIivΔ]
)
Q
(√

2γ|α0|[1−αQivΔ]
)

−1

4
Q
(√

2γ|α0|[1+βIivΔ]
)
Q
(√

2γ|α0|[1−βQivΔ]
)

(4.18)

T1(β) =

∫ b

−b

∫ ∞

0

Q
(
a(β, vΔ)|α0|

)
fα0(|α0|)fv(vΔ)d|α0|dvΔ

T2(α, β, vΔ) =

∫ ∞

0

Q
(
a(α, vΔ)|α0|

)
Q
(
a(β, vΔ)|α0|

)
fα0(|α0|)d|α0|

where a(β, vΔ) =
√

2γ(1 + βvΔ). Then we can solve the above integrations to obtain

T1(β) =

⎧⎪⎪⎨
⎪⎪⎩

1
2
−

√
2γσR

2
√

1+2γσ2
R

if β = 0

1
2
−
[√

1+2γσ2
Rx2
]1+βb

1−βb

4
√

2γβσRb
if β �= 0

(4.19)

and T2(α, β, vΔ) is given by

T2(α, β, vΔ) =
1

4
− a(α, vΔ)m(α, vΔ)

2π

(
π

2
− cot−1

[
1

a(β, vΔ)m(α, vΔ)

])

− a(β, vΔ)m(β, vΔ)

2π

(
π

2
− cot−1

[
1

a(α, vΔ)m(β, vΔ)

])
(4.20)

where the function m(α, vΔ) is defined as

m(α, vΔ) =
σR√

1 + σ2
Ra

2(α, vΔ)
.

Now we want to find T2(α, β) which is given by

T2(α, β) =

∫ b

−b

T2(α, β, vΔ)fv(vΔ)dvΔ.

After having some rearrangements in the expression (4.20) for notational simplicity,
we denote T2(α, β) as

T2(α, β) =
1

4
− T2′(α) − T2′(β) + T2′(α, β) + T2′(β, α) (4.21)
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where

T2′(α) =

∫ b

−b

a(α, vΔ)m(α, vΔ)

8b
dvΔ

T2′(α, β) =

∫ b

−b

a(α, vΔ)m(α, vΔ)

4πb
cot−1

[ 1

a(β, vΔ)m(α, vΔ)

]
dvΔ.

Note that fv(vΔ) = 1
2b

: vΔ ∈ [−b, b]. After some mathematical manipulations it can

be easily shown that

T2′(α) =
1

4
− T1(α)

2

and

T2′(α, β) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
g1T2′ (x, α, β)

]1+αb

1−αb
if α �= 0[

g2T2′ (x, α, β)
]b
−b

if α = 0&β �= 0

1
2πρ

cot−1(ρ) if α = 0&β = 0

(4.22)

where g1T2′ (x, α, β) and g1T2′ (x, α, β) are defined as follows.

g1T2′ (x, α, β) =
1

4παbγ̄

√
1 + γ̄2x2 cot−1

[ √
1 + γ̄2x2

γ̄(ηx+ 1 − η)

]

− η
√

1 + η2 + γ̄2(1 − η)2

4παbγ̄(1 + η2)
tan−1

[
x+Q

R

]

+
1 − η

4παb(1 + η2)
ln

[√
γ̄2(1 + η2)x2 + 2ηγ̄2(1 − η)x+ γ̄2(1 − η)2 + 1

]
(4.23)

g2T2′ (x, α, β) =
1

4πρb

(
x cot−1

[
ρ

1 + βx

]
− ρ

β
ln

[√
(1 + βx)2 + ρ2

]

+
1

β
tan−1

[
1 + βx

ρ

])
(4.24)

here η = β
α
, γ̄ =

√
2γσR, ρ =

√
1+γ̄2

γ̄
, Q = η(1−η)

1+η2 and R =

√
1+η2+γ̄2(1−η)2

γ̄(1+η2)
. Now we

have derived the expressions for T1(β) and T2(α, β), and using (4.19) and (4.21) we

can easily write the SER conditioned on ai, Ps (ξ|ai), as given by

Ps (ξ|ai) =
1

2
T1(αIi) +

1

2
T1(βIi) +

1

2
T1(−αQi) +

1

2
T1(−βQi) − 1

4
T2(αIi,−αQi)

− 1

4
T2(αIi,−βQi) − 1

4
T2(βIi,−αQi) − 1

4
T2(βIi,−βQi) (4.25)

Averaging over all ai combinations leads to the SER which is given in (4.16).
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4.2.3 AWGN and frequency-flat Rayleigh Fading Channels with Perfect

Power Control

With the arguments and results described in the section 3.2.4 we can write that,

fv(vΔ|h) = fv(vΔ) = N (0, CRB|h) (4.26)

The expressions for the CRBs are given in (3.49) and (3.53) which was mentioned

previously.

4.2.3.1 AWGN Channel

For the AWGN channel, (4.1) simply reduces to a single integral evaluation and the

signal model for AWGN channel can be obtained from (3.7) as, r = Γ(v)s + w where
s = [s0s1 . . . sN−1]

T is the training signal vector. The CRB of the CFO estimation

for the aforementioned signal model is given by (3.49). Hence using the definition of

I1(μ, λ) (4.9) and taking fv(vΔ) = N (0,Ω) (Verdu, 1998, eq.3.66) we can easily show
that

I1(μ, λ) = Q

(
μ

1 + Ωλ2

)
(4.27)

and I2(μ, λ1, λ2) defined in (4.10) can be reduced to

I2(μ, λ1, λ2) =
1

2π

∫ π
2
−φ1

0

exp

( −μ2

2b1
2 sin2 φ

)
dφ

+
1

2π

∫ π
2
−φ2

0

exp

( −μ2

2b2
2 sin2 φ

)
dφ. (4.28)

I2(μ, λ1, λ2) cannot be evaluated in closed-form and it shows similarities to the well

known Craig’s formula. For simplicity, define λ1Ω =
√

Ωλ1 and λ2Ω =
√

Ωλ2. So that
b1 =

√
λ2

1Ω + 1, b2 =
√
λ2

2Ω + 1,

a1 =
λ2

1Ω − λ1Ωλ2Ω + 1√
(λ2

1Ω + 1)(λ2
1Ω + λ2

2Ω + 1)

a2 =
λ2

2Ω − λ1Ωλ2Ω + 1√
(λ2

2Ω + 1)(λ2
1Ω + λ2

2Ω + 1)

with φ1 = tan−1(a1b1) and φ2 = tan−1(a2b2). Then with some mathematical manipu-

lations we obtain the SER conditioned on ai, Ps (ξ|ai) as given in (4.15). Averaging
over all ai combinations gives the SER which is given by (4.16).

4.2.3.2 Frequency-Flat Rayleigh Fading Channel

When the frequency-flat fading channel is considered, the CRB|h which was mentioned

previously is given by (3.53). Because of the perfect power control, we can consider
that |α0|2 is constant while fixing s. Thus we have the pdf of residual CFO f(vΔ|α0),

which is given by (3.54) . So that using the conditional SER Ps (ξ|ai, vΔ, |α0|) derived
in (4.18), CRB|α0 , aforementioned fv(vΔ) and (4.1), we can derive the SER, following
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almost the same set of arguments which were used in the derivation of SER in Section
4.2.3.1. The following parameter changes should be noticed carefully:

I1(μ, λ) = Q

(
μ

1 + Λλ2

)
(4.29)

and I2(μ, λ1, λ2) defined in (4.10) as mentioned before is

I2(μ, λ1, λ2) =
1

2π

∫ π
2
−φ1

0

exp

( −μ2

2b1
2 sin2 φ

)
dφ

+
1

2π

∫ π
2
−φ2

0

exp

( −μ2

2b2
2 sin2 φ

)
dφ (4.30)

with slight parameter changes, where b1 =
√
λ2

1Λ + 1, b2 =
√
λ2

2Λ + 1,

a1 =
λ2

1Λ − λ1Λλ2Λ + 1√
(λ2

1Λ + 1)(λ2
1Λ + λ2

2Λ + 1)

a2 =
λ2

2Λ − λ1Λλ2Λ + 1√
(λ2

2Λ + 1)(λ2
1Λ + λ2

2Λ + 1)

φ1 = tan−1(a1b1) and φ2 = tan−1(a2b2), where λ1Λ =
√

Λλ1 and λ2Λ =
√

Λλ2. Hence

the SER and the corresponding conditional SER are given by (4.16) and (4.15) respec-
tively.

4.3 Performance Analysis with Channel-Dependent Residual CFO for 4-

QAM OFDM Systems

Same as we discussed previously in (3.56) For the channel-dependent residual CFO

case in 4-QAM, SER on a particular (say 0th) subcarrier of the ith OFDM symbol
conditioned on the other N − 1 sub-carrier symbols is obtained by solving

Ps (ξ|ai) =

∫ ∫
Ps (ξ|vΔ,h,ai) fv(vΔ|h)f(h)dvΔdh

4.3.1 Frequency-flat Rayleigh Fading Channel

For the channel-dependent residual CFO scenario, the symbol error probability is given
by (3.56). The closed-form solution to (3.56) for the frequency-flat Rayleigh fading

channel in the case of 4-QAM is presented in the following. However, solving the
above problem for the frequency-selective case appears to be intractable. The variance

of the conditional Gaussian random variable vΔ|αo for the frequency-flat Rayleigh
fading channel is given by (3.53) for the MLE estimator (Morelli and Mengali,

2000) as mentioned before. Then averaging the conditional SER Ps (ξ|ai, vΔ, |α0|)
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using fv(vΔ|h) we can obtain Ps (ξ|ai, |α0|) as

Ps (ξ|ai, |α0|) =
1

2
E
{
Q
(√

2γ
[|α0| +

√
ΛαIiX

])}
+

1

2
E
{
Q
(√

2γ
[|α0| +

√
ΛβIiX

])}
........

........− 1

4
E
{
Q
(√

2γ
[|α0| +

√
ΛβIiX

])
Q
(√

2γ
[|α0| −

√
ΛβQiX

])}
(4.31)

where the statistical expectation is taken with respect to the random variable X =
vΔ|α0|√

Λ
and X ∼ N (0, 1). It is obvious that by observing the functions I1(μ, λ) and

I2(μ, λ1, λ2) in Section 4.2.3.2, we can write

Ps (ξ|ai, |α0|) =
1

2
I1(
√

2γ|α0|,
√

2γαIi) + ....

....− 1

4
I2(
√

2γ|α0|,
√

2γβIi,−
√

2γβQi). (4.32)

Next, after integrating Ps (ξ|ai, |α0|) with fα0(|α0|) to remove the dependency of |α0|,
we obtain the conditional SER Ps (ξ|ai) as

Ps (ξ|ai) =
1

2
I∗1 (
√

2γ,
√

2γαIi) +
1

2
I∗1 (
√

2γ,
√

2γβIi) +
1

2
I∗1 (
√

2γ,−
√

2γαQi)

+
1

2
I∗1 (
√

2γ,−
√

2γβQi) − 1

4
I∗2 (
√

2γ,
√

2γαIi,−
√

2γαQi)

− 1

4
I∗2 (
√

2γ,
√

2γαIi,−
√

2γβQi) − 1

4
I∗2 (
√

2γ,
√

2γβIi,−
√

2γαQi)

− 1

4
I∗2 (
√

2γ,
√

2γβIi,−
√

2γβQi) (4.33)

where

I∗1 (t0, t1) =

∫ ∞

0

I1(t0|α0|, t1)fα0(|α0|)d|α0|

I∗2 (t0, t1, t2) =

∫ ∞

0

I2(t0|α0|, t1, t2)fα0(|α0|)d|α0|.

We can obtain the solutions to above integrations as follows.

I∗1 (t0, t1) =

[
1

2
− t0σR√

1 + t20σ
2
R + Λt21

]
(4.34)

I∗2 (t0, t1, t2) =
1

2
− ψ1 + ψ2

2π
− ε1

2π
√

1 + ε2
1

(
π

2
− tan−1

[
t0σRa1√
1 + ε2

1

])

− ε2

2π
√

1 + ε2
2

(
π

2
− tan−1

[
t0σRa2√
1 + ε2

2

])
(4.35)

where ε1 = t0σR

b1
, ε2 = t0σR

b2
, b1 =

√
t21Λ + 1, b2 =

√
t22Λ + 1,

a1 =
t21Λ − t1Λt2Λ + 1√

(t21Λ + 1)(t21Λ + t22Λ + 1)
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a2 =
t22Λ − t1Λt2Λ + 1√

(t22Λ + 1)(t21Λ + t22Λ + 1)

ψ1 = tan−1(a1b1) and ψ2 = tan−1(a2b2), with t1Λ =
√

Λt1 and t2Λ =
√

Λt2. Substituting
the conditional SER in (4.33) into (4.16) will give the corresponding SER.
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4.4 Results and Discussion

4.4.1 Channel-Independent CFO or Residual CFO for 4-QAM OFDM Sys-

tems

The simulations results discussed in this section are obtained by running the same set
of simulation runs as mentioned in the previous section 3.5 with the only change in the

symbol constellation of the transmitted signals.

From Fig. 4.1 we can observe the simulation results when the normalized CFO is
uniformly distributed over [−b, b] with b = 0.05 and b = 0.1 for AWGN channel. As

we can see, the analytical SER curves obtained using (4.16) closely match with the
simulation results for b = 0.05. Similar form of discrepancies which are experienced

in the BPSK case are prominent for the 4-QAM case as well when b = 0.1. As we
mentioned earlier, the small CFO assumption in the analytical development is the

main reason for this. Because, the CFO would typically be quite small at high SNR
the above discrepancy is less likely to happen in practice and thus convincing the

relevance of the analytical result.
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Figure 4.1: BER curves for AWGN channel with N=8 subcarriers and b=0.1, b=0.05
for 4-QAM OFDM Systems.

As far as flat-fading is concerned, the simulation results agree well with our an-

alytical results for both b = 0.05 and b = 0.1 cases, confirming the accuracy of our
analytical expressions given (4.25) and (4.16). We can observe from the Fig. 4.2 that

the deviations of the simulation points when b = 0.1 is not significant as compared to
the case of AWGN channel at high SNR. This is due to the fact that, even at low SER

values the contribution from CFO has a less dominant effect on SER than the fading
does and hence the small CFO assumption in the analytical development for flat fading

is more realistic.
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Figure 4.2: BER curves for the frequency-flat Rayleigh fading channel with N=8 sub-

carriers and b=0.1, b=0.05 for 4-QAM OFDM Systems.
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Figure 4.3: BER curves for the AWGN channel (setting I) with N=16 subcarriers for
4-QAM OFDM Systems.
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As we have discussed earlier channel independence can be achieved using perfect
power controlling as well. The corresponding simulation results for AWGN channel is

shown in the Fig. 4.3 and Fig. 4.4 for Setting I and Setting II1 respectively. OFDM
system with N = 16 with one OFDM preamble/training symbol followed by only one

OFDM data symbol is simulated without considering the CFO-induced, symbol-index-

dependent phase shift as we discussed in the section 3.5.1. The correctness of the
analytical derivations (section 4.1.3.1) is noticeable by observing the closeness of the

analytical curve and the simulation points in the Fig. 4.3. Moreover the Fig. 4.4
reinforce the fact that, the applicability of our analytical results to practical systems

with a CFO estimator. The simulation results under perfect power control for the
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Figure 4.4: BER curves for the AWGN channel (setting II) with N=16 subcarriers for
4-QAM OFDM Systems.

frequency-flat fading channel are shown in Fig. 4.5 - Fig. 4.8. The corresponding

Setting I and Setting II results are depicted in Fig. 4.5 and Fig. 4.6 with N = 52,
which reveals the accuracy of analytical derivations given in the section 4.1.3.2 and

indeed applicable to practical systems. Careful observations of Fig. 4.6, Fig. 4.7 and
Fig. 4.8 (all are under Setting II) show that, the discrepancy of the simulated points and

the analytical results increases as N decreases. The reason behind this phenomenon is
the asymptotic behaviour of the ML estimate as shown in (3.42). That is higher the

N higher the accuracy of (3.43). As far as the applications of OFDM is concerned, the
number of subcarriers used (N) is typically not a small number, For example IEEE

Std 802.11a and IEEE Std 802.16 have N = 52 and N = 256 respectively (IEEE Std
802.11a-1999(R2003), 2003; IEEE Std 802.16TM-2004, 2004) thus confirming the

practical applicability of our derivations.

1
see the section 3.5.1
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Figure 4.5: BER curves for the frequency-flat Rayleigh fading channel (setting I) with

perfect power control and N=52 subcarriers for 4-QAM OFDM Systems.
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Figure 4.6: BER curves for the frequency-flat Rayleigh fading channel (setting II) with

perfect power control and N=52 subcarriers for 4-QAM OFDM Systems.
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Figure 4.7: BER curves for the frequency-flat Rayleigh fading channel (setting II) with

perfect power control and N=20 subcarriers for 4-QAM OFDM Systems.
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Figure 4.8: BER curves for the frequency-flat Rayleigh fading channel (setting II) with
perfect power control and N=32 subcarriers for 4-QAM OFDM Systems.
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4.4.2 Channel-Dependent Residual CFO for 4-QAM OFDM Systems

This section describes the simulation results associated to the analytical derivation
presented in the section 4.2.1.

The simulation results in Fig. 4.9 and Fig. 4.10 show how the analytical results
are matching with the simulated results for OFDM systems with N = 32 in the cases

of Setting I and Setting II respectively. As pointed out previously, Fig. 4.10, Fig. 4.11
and Fig. 4.12 (all are under Setting II) is presented to demonstrate the behaviour of the

discrepancy or the deviation of our analytical result and the simulation results. Indeed
this arises due to the asymptotic nature of the ML estimate as mentioned before.

Again we can conclude that, higher the N higher the accuracy of (3.43) assuring the

applicability and the correctness of the analytical results as far as practical OFDM
systems are concerned.
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Figure 4.9: BER curves for the frequency-flat Rayleigh fading channel (setting I) with

no power control and N=32 subcarriers for 4-QAM OFDM Systems.
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Figure 4.10: BER curves for the frequency-flat Rayleigh fading channel (setting II)

with no power control and N=32 subcarriers for 4-QAM OFDM Systems.
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Figure 4.11: BER curves for the frequency-flat Rayleigh fading channel (setting II)
with no power control and N=8 subcarriers for 4-QAM OFDM Systems.

54



0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

E
b
 / N

0
 (dB)

S
E

R

Analytical curve
Simulated points

Figure 4.12: BER curves for the frequency-flat Rayleigh fading channel (setting II)
with no power control and N=16 subcarriers for 4-QAM OFDM Systems.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The Main objective in this thesis is to carryout a comprehensive investigation on perfor-

mance degradation in OFDM systems due to carrier frequency offset in the transmitter
and the receiver. Eventhough in the literature this problem has been addressed in sev-

eral occasions, none of them have attempted to incorporate the randomness of CFO in

their derivations. The CFO is a random parameter for which the probability density
function should clearly be identified.

In essence, the identification of the nature of the random variable CFO is twofold
in our case where it is treated as either uniformly distributed or Gaussian distributed.

Consider a situation where a CFO estimator at the receiver is not implemented. The
possible scenario might be where the transceivers use highly stable crystal oscillators

and skip CFO estimation to save energy. In this case we can say that the CFO is
uniformly distributed showing the applicability of our derivations in the sections 3.2.1-

3 and 4.1.1-3 for BPSK and 4-QAM OFDM systems respectively.
The ML estimates are Gaussian distributed and using this observation, we obtain

the rest of the derivations accordingly identifying the probability distribution function
of the residual CFO. Another important fact that should be mentioned in the deriva-

tions with Gaussian pdf is the distinction between perfect power control and no power
control. We carry out our derivation with no channel energy fluctuations, or in other

words, in situations where the statistics of the estimated residual CFO does not depend

on the channel since the power control compensates the channel energy fluctuations.
On the other hand, no power control will not consider stabilizing the channel energy

fluctuations. These concepts are important in the training signal design aspects for
OFDM systems showing the significance of our derivations in the performance analysis

of such systems.
It should be emphasized that, the analytical BER expressions derived for a va-

riety of situations here cannot be obtained with the use of existing ICI expressions
(Sathananthan and Thellambura, 2001; Dharmawansa et al. [a] [b], 2006). As

we consider the CFO or residual CFO to be random, it should remain in a form where
we can mathematically utilize it and further apply it in the problem to obtain satis-

factory solutions. Thus the derivation of the new approximated ICI expression given
in (3.12) is the most useful result which enables us in getting through all the other

derivations.
In summary, we derive BER/SER expressions for AWGN channel, frequency-flat

and frequency-selective Rayleigh fading channels with the symbols coming from BPSK

and 4-QAM constellations. The simulation results confirm the accuracy and the ap-
plicability of those in analysing the performance of practical OFDM systems.
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5.2 Recommendations

In this section we suggest recommendations and potential future directives which may

be investigated more thoroughly to make the results more realistic. Moreover some of
these can be considered as modifications or amendments which should be investigated

to explore the performance degradations or improvements in different kind of channel
representations and system model representations.

1. In the section 3.3.2 we discuss the BER analysis in the case of frequency-selective
Rayleigh fading channel with uniformly distributed CFO for BPSK OFDM sys-

tems. But the corresponding analysis is not performed for the 4-QAM OFDM
systems, and hence can be considered.

2. In our derivations we did not consider the CFO-induced, symbol-index-dependent
phase shift of exp(j2πvΔm(N + Ng)/N) where m is the OFDM symbol index

and Ng is the number of guard samples. We simply assume that every symbol is
phase synchronized, so that the receiver is able to perfectly compensate for the

aggregated phase-shift term (Rugini and Banelli, 2005). Incorporating this
cumulative phase-shift in to the system equation deserves attention.

3. All the associated fading coefficients in our derivations are taken to be circularly

symmetric complex Gaussian random variables which imitate a Rayleigh fading
environment. In addition therefore the mathematical tractability of the perfor-

mance analysis with different types of fading coefficients (e.g Nakagami-m, Rice,
etc.) should be obtained.

4. Since we concentrate only on BPSK and 4-QAM symbol constellation schemes,
the impact of using higher order symbol constellations needs to be investigated. A

careful observation of equation (4.5) reveals that, M-QAM symbol constellations
will have the conditional probability expressions to be lengthy thus resulting more

complex SER expressions. Hence, investigation of possible complexity reduction
method is of significance.

5. MIMO technology has attracted attention in wireless communications, since it
offers significant increases in data throughput and link range without additional

bandwidth or transmit power. The performance degradation in these systems due

to the presence of ICI in MIMO OFDM systems (space-frequency coded OFDM,
space-time coded OFDM) should be thoroughly investigated.
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APPENDIX A

SOME OF THE INTERGRATIONS RELATED WITH Q-FUNCTION

1.

I =

∫
Q(c + dx)dx (A.1)

Q- function is defined bu

Q(x) =
1√
2π

∫ ∞

x

exp

{
− y2

2

}
dy (A.2)

Dfferentiating (A.2) with respect to x yeilds

d

dx
Q(x) = Q′(x) = − 1√

2π
exp

{
− x2

2

}
(A.3)

so that we can perform the part by integration as∫
Q(x)dx =

∫
Q(x)

d

dx
xdx = xQ(x) − 1√

2π
exp {−x

2

2
} (A.4)

Using (A.4) we can solve the indefinite integral
∫
Q(c+ dx)dx to obtain∫

Q(c+ dx)dx =
1

d

[
(c+ dx)Q(c+ dx) − 1√

2π
exp

{
− (c + dx)2

2

}]
(A.5)

where c and d are arbitary constants with d �= 0.

2.

I =

∫ ∞

0

Q(a1x)Q(a2x)
x

σ2
R

exp

(
− x2

2σ2
R

)
dx (A.6)

To perform part by integration we arrange (A.6) as

I =

∫ ∞

0

Q(a1x)Q(a2x)
d

dx

(
− exp

[
− x2

2σ2
R

])
dx (A.7)

After having some mathematical manipulations on (A.7) we can obtain

I =
1

4
−
∫ ∞

0

a2√
2π
Q(a1x) exp

[
− x2

2

(
a2

2 1

σ2
R

)]
dx

−
∫ ∞

0

a1√
2π
Q(a2x) exp

[
− x2

2

(
a1

2 1

σ2
R

)]
dx (A.8)

Using (Gradshteyn and Ryzhik, 1980 : eq 6.285 ) and followed by some
triagonometric manipulations gives

I =
1

4
− a2m2

4
− a1m1

4
+

a2m2

2π
cot

(
1

a1m2

)
+

a1m1

2π
cot

(
1

a2m1

)
(A.9)
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3.

I(μ) =

∫ ∞

−∞
Q(μ+ λ1x)Q(μ + λ2x)

1√
2π

exp

(
− x2

2

)
dx (A.10)

As differential coefficients inside the integral are well defined over the range
(−∞,∞), differentiatin of I(μ) = I ′(μ) with respect to μ yields

I ′(μ) = I1(μ) + I2(μ) (A.11)

where

I1(μ) = − 1

2π

∫ ∞

−∞
Q(μ+ λ2x) exp

(
−
x2 + 2μλ1x

λ2
1+1

+ μ2

λ2
1+1

2
λ2
1+1

)
dx (A.12)

with some rearrangements we can further reduced (A.12) as

I1(μ) = − 1√
2(λ2

1 + 1)
Q

(
μF√
λ2

F + 1

)
exp

(
− μ2

2(λ2
1 + 1)

)
(A.13)

where μF = μ
(
1− λ1λ2

λ2
1+1

)
and λF = λ2√

λ2
1+1

. Note that I2(μ) has the same definition

as I1(μ) with λ1 and λ2 interchanged. With the fact that I(∞) = 0

− I(μ) =

∫ ∞

μ

I ′(t)dt = − 1√
2π(λ2

1 + 1)

∫ ∞

μ

exp

(
− t2

2b21

)
Q(a1t)dt

− 1√
2π(λ2

2 + 1)

∫ ∞

μ

exp

(
− t2

2b22

)
Q(a2t)dt (A.14)

where b21 = λ2
1 + 1, b22 = λ2

2 + 1, a1 =
λ2
1−λ1λ2+1√

(λ2
1+1)(λ2

1+λ2
2+1)

and a2 =
λ2
2−λ1λ2+1√

(λ2
2+1)(λ2

1+λ2
2+1)

.

Considering only the first integral term in (A.14) we can deduce that

− 1√
2π(λ2

1 + 1)

∫ ∞

μ

exp

(
− x2

2b21

)
Q(a1x)dx

= − 1√
2π

∫ ∞

μ
b1

exp

(
− t2

2

)
Q(a1b1t)dt

= − 1

2π

∫ ∞

μ
b1

∫ ∞

a1b1t

exp

(
− y2

2

)
exp

(
− t2

2

)
dydt (A.15)

Thus we can simply move from rectangular cordinates to polar cordinates and
thus rewrite the integral

− 1

2π

∫ ∞

μ
b1

∫ ∞

a1b1t

exp

(
− y2

2

)
exp

(
− t2

2

)
dydt

= − 1

2π

∫ π
2

β1

∫ ∞

μ sec θ
b1

r exp

(
− r2

2

)
drdθ (A.16)
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with β1 = tan−1(a1b1). Then we can easily come up with a solution to I(μ) as

I(μ) =
1

2π

∫ π
2
−β1

0

exp

( −μ2

2b1
2 sin2 φ

)
dφ

+
1

2π

∫ π
2
−β2

0

exp

( −μ2

2b2
2 sin2 φ

)
dφ (A.17)

I(μ) cannot be evaluated in closed-form and it shows similarities to the well
known Craig’s formula. So that b1 =

√
λ2

1 + 1, b2 =
√
λ2

2 + 1,

a1 =
λ2

1 − λ1λ2 + 1√
(λ2

1 + 1)(λ2
1 + λ2

2 + 1)

a2 =
λ2

2 − λ1λ2 + 1√
(λ2

2 + 1)(λ2
1 + λ2

2 + 1)

with β1 = tan−1(a1b1) and β2 = tan−1(a2b2).
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