

Multicell MISO Downlink Weighted Sum-Rate Maximization: A Distributed Approach

*P. C. Weeraddana

M. Codreanu, **M. Latva-Aho, *A. Ephremides

*KTH, Royal institute of Technology, Stockholm, Sweden

**CWC, University of Oulu, Finland
***University of Maryland, USA

2013.02.19

ROYAL INSTITUTE OF TECHNOLOGY

Motivation

 Centralized RA requires gathering problem data at a central location -> huge overhead

 Large-scale communication networks -> large-scale problems

- Distributed solution methods are indeed desirable
 - Many local subproblems -> small problems
 - Coordination between subproblems -> light protocol

Motivation

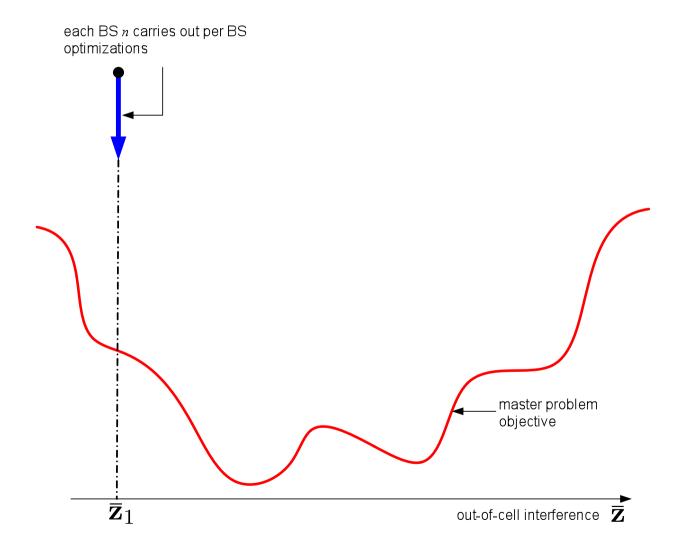
- WSRMax: a central component of many NW control and optimization methods, e.g.,
 - Cross-layer control policies
 - NUM for wireless networks
 - MaxWeight link scheduling for wireless networks
 - power and rate control policies for wireless networks
 - achievable rate regions in wireless networks

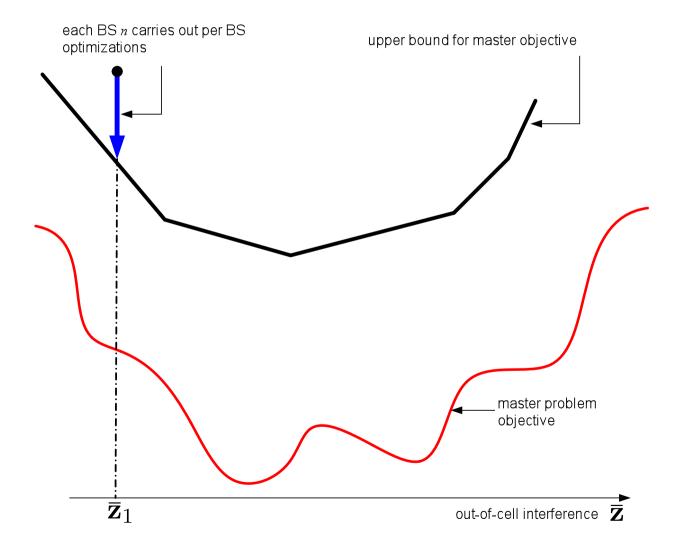
Challenges

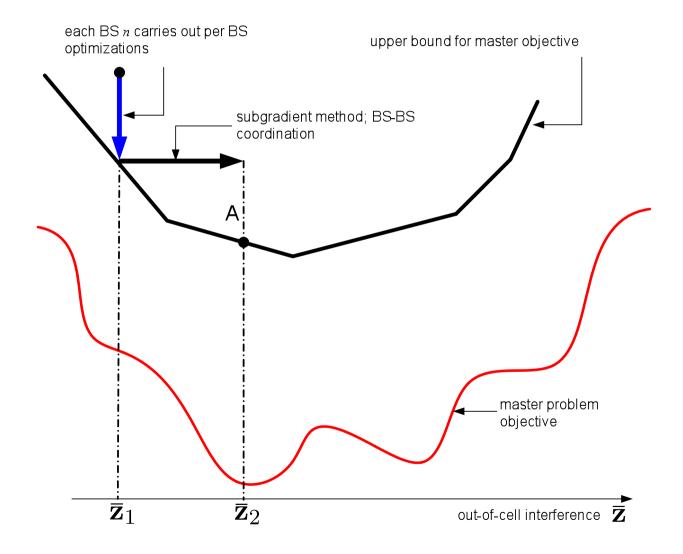
- WSRMax problem is nonconvex, in fact NP-hard
 - At least a suboptimal solution is desirable
- Considering the most general wireless network (MANET) is indeed difficult
 - A particular case is infrastructure based wireless networks
 - Cellular networks
- Coordinating entities
 - MS-BS, MS-MS, BS-BS
- Coordination between subproblems -> light protocol

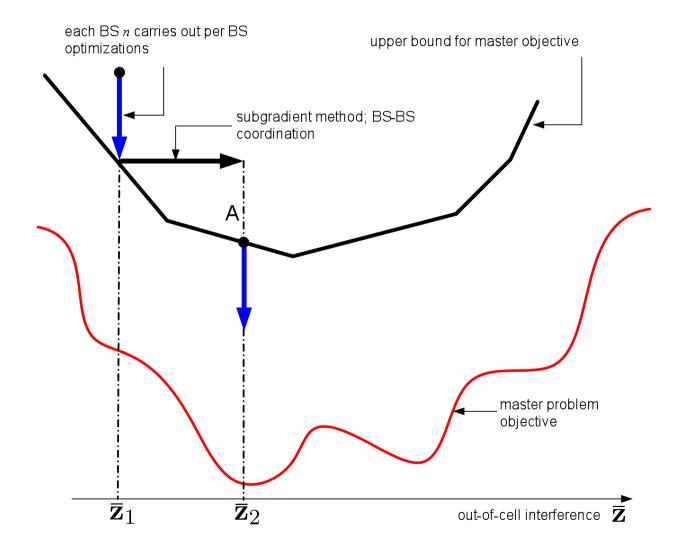
Our contribution

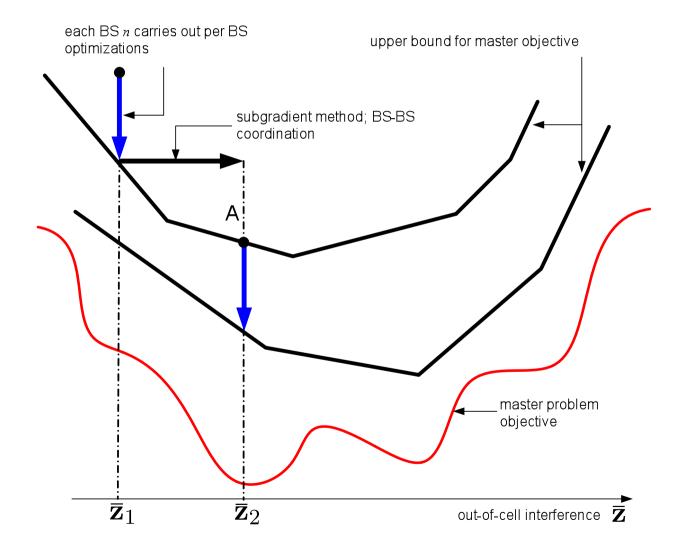
- Distributed algorithm for WSRMax for MISO interfering BC channel; BS-BS coordination required
- Algorithm is based on primal decomposition methods and subgradient methods
- Split the problem into subproblems and a master problem
 - Iocal variables: Tx beamforming directions and power
 - global variables: out-of-cell interference power
- Subproblems asynchronous (one for each BS)
 - variables: Tx beamforming directions and power
- Master problem resolves out-of-cell interference (coupling)
- P. C. Weeraddana, M. Codreanu, M. Latva-aho, and A. Ephremides, IEEE Transactions on Signal Processing, February, 2013

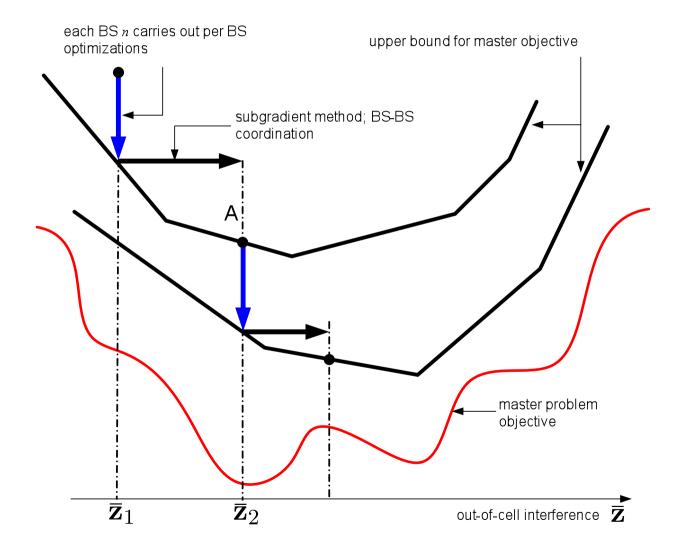


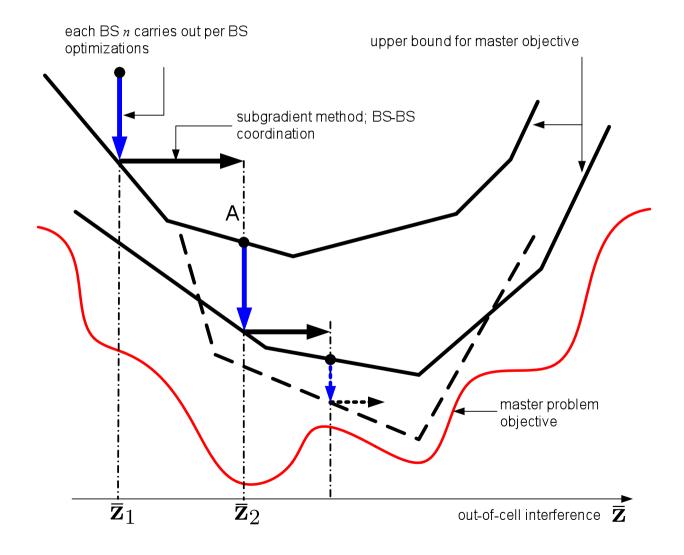


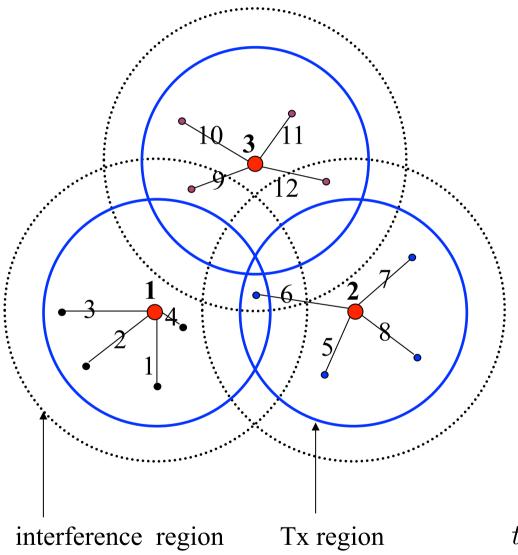












- N : number of BSs
- \mathcal{N} : set of BSs
- L : number of data streams
- \mathcal{L} : set of data streams
- $\mathcal{L}(n)$: set of data streams of BS n
 - T : number of BS antennas

rec(l) : receiver node of d.s. l

tran(l): transmitter node of d.s. l

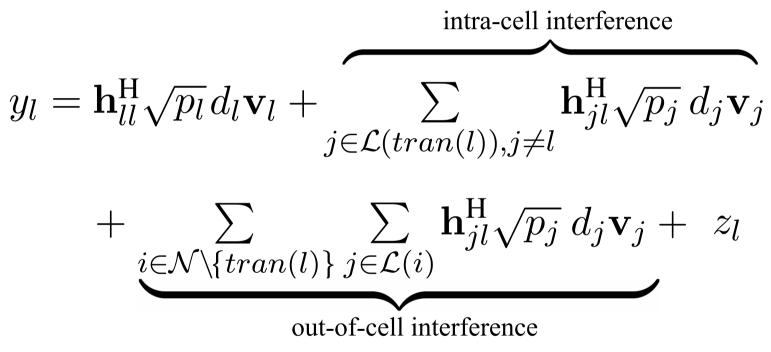
signal vector transmitted by BS \boldsymbol{n}

$$\mathbf{x}_n = \sum_{l \in \mathcal{L}(n)} \sqrt{p_l} d_l \mathbf{v}_l$$

 p_l : power

- d_l : information symbol; $E|d_l|^2 = 1$, $E\{d_ld_j^*\} = 0$
- \mathbf{v}_l : beamforming vector; $\|\mathbf{v}_l\|_2 = 1$

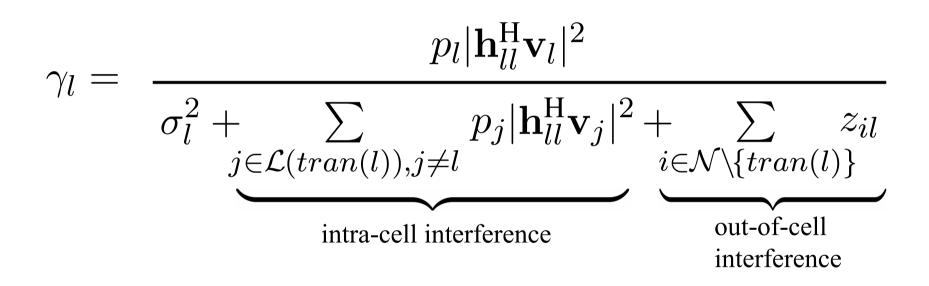
signal received at rec(l)



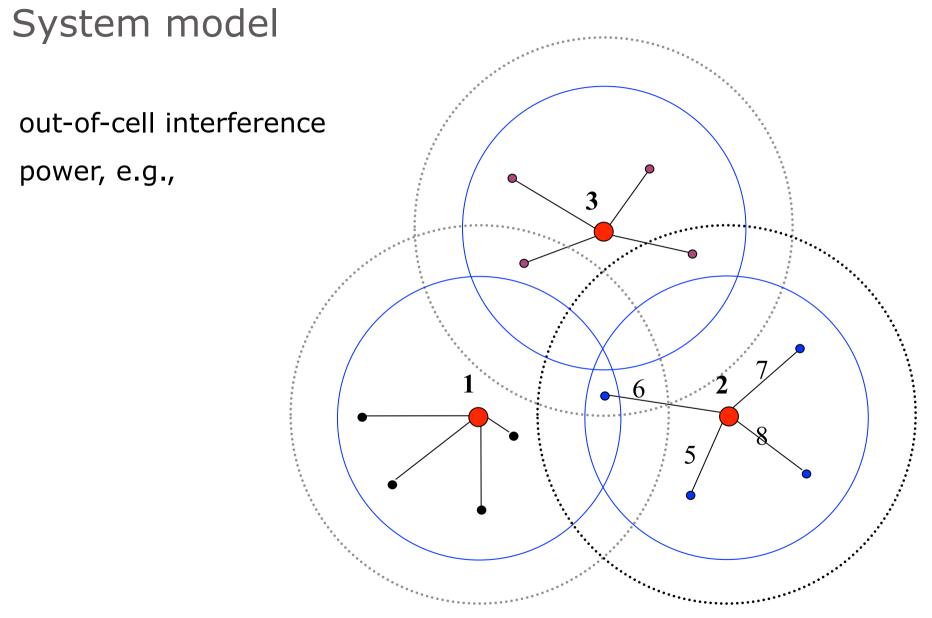
$$\mathbf{h}_{jl}^{\mathrm{H}}$$
 : channel; $tran(j)$ to $rec(l)$

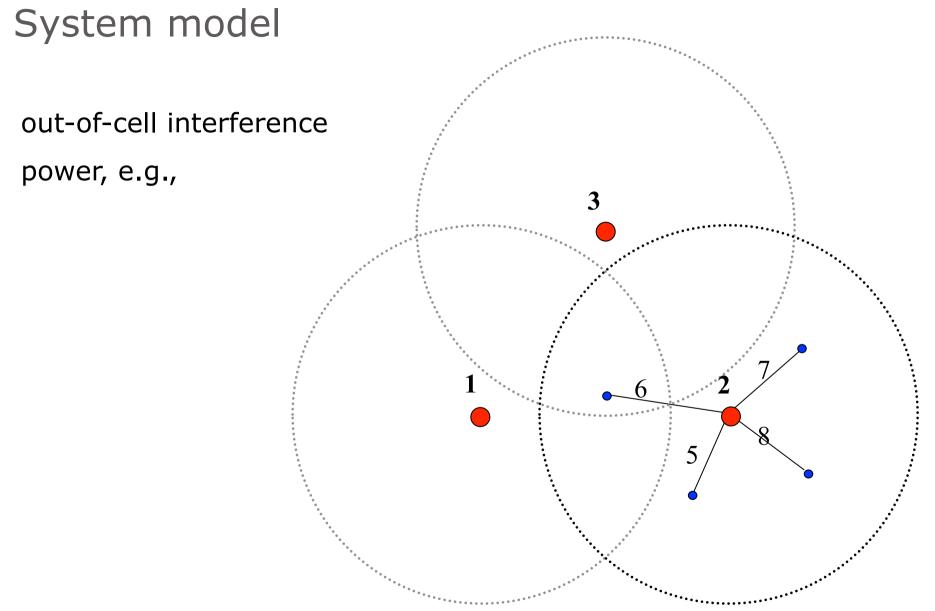
 z_l : cir. symm. complex Gaussian noise; variance σ_l^2

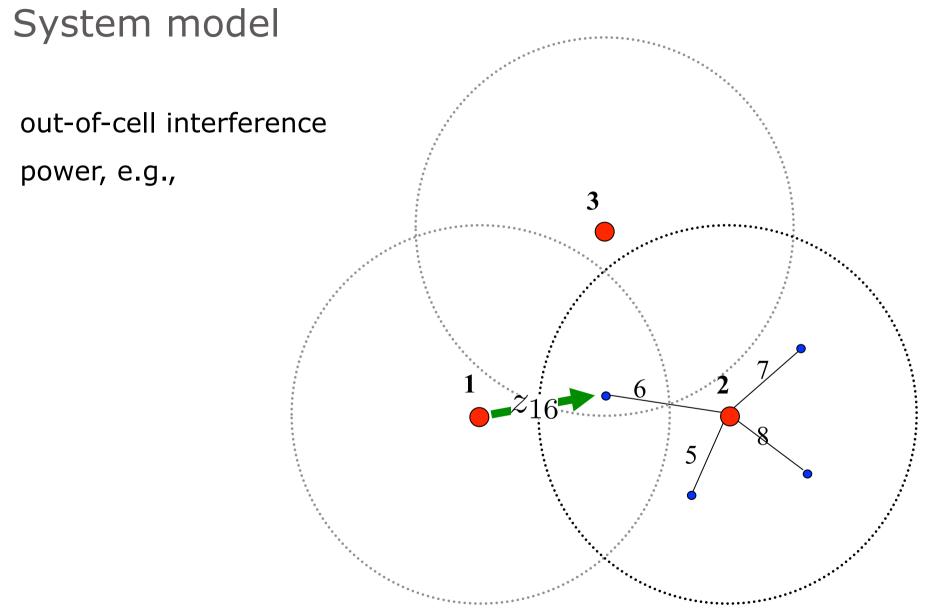
received SINR of rec(l)

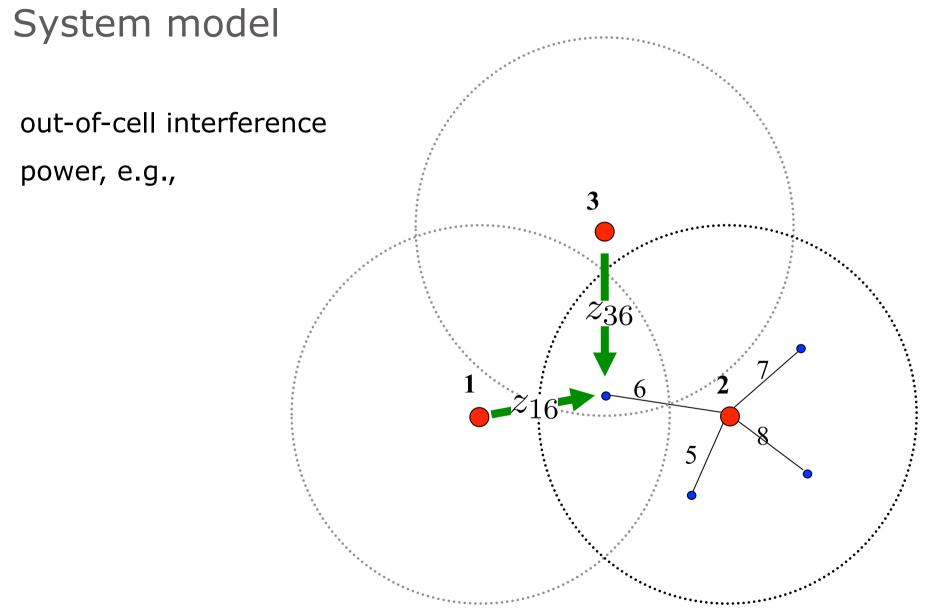


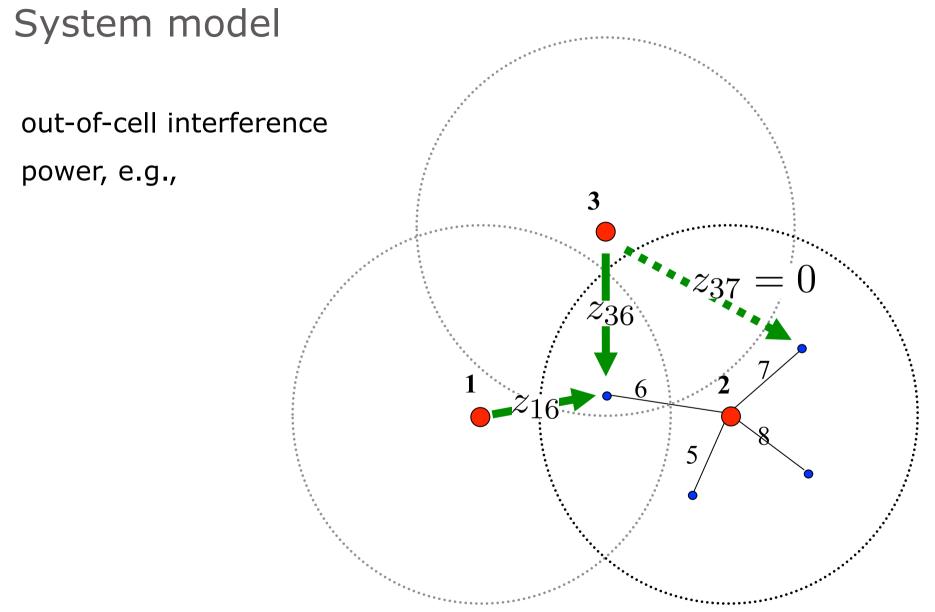
 $z_{il} = \sum_{j \in \mathcal{L}(i)} p_j |\mathbf{h}_{jl}^{\mathrm{H}} \mathbf{v}_j|^2$: out-of-cell interference power; *i* th BS to rec(l)



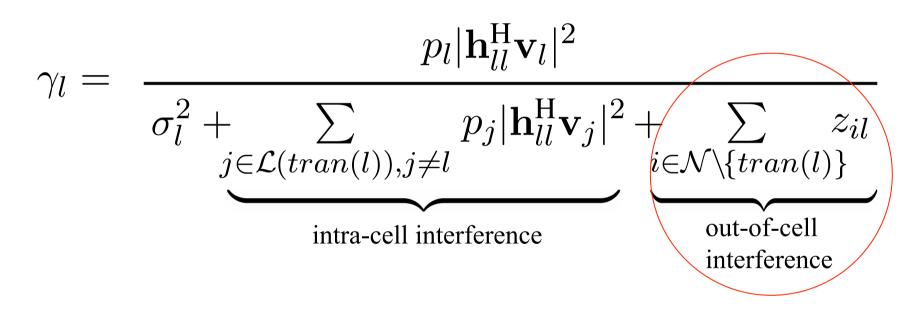






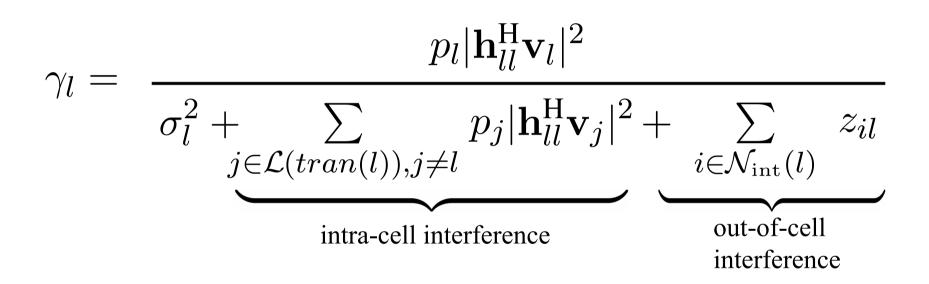


received SINR of rec(l)



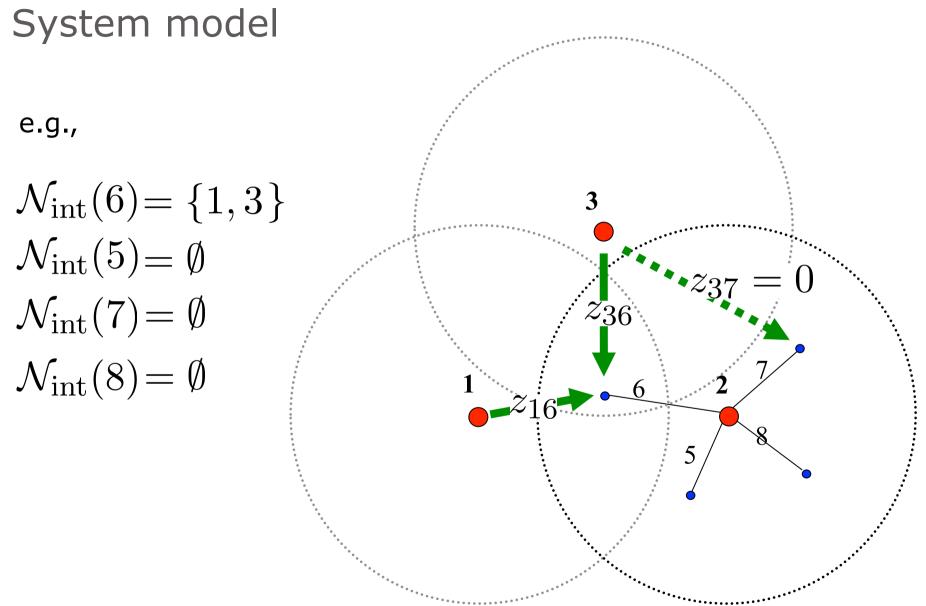
 $z_{il} = \sum_{j \in \mathcal{L}(i)} p_j |\mathbf{h}_{jl}^{\mathrm{H}} \mathbf{v}_j|^2$: out-of-cell interference power; *i* th BS to rec(l)

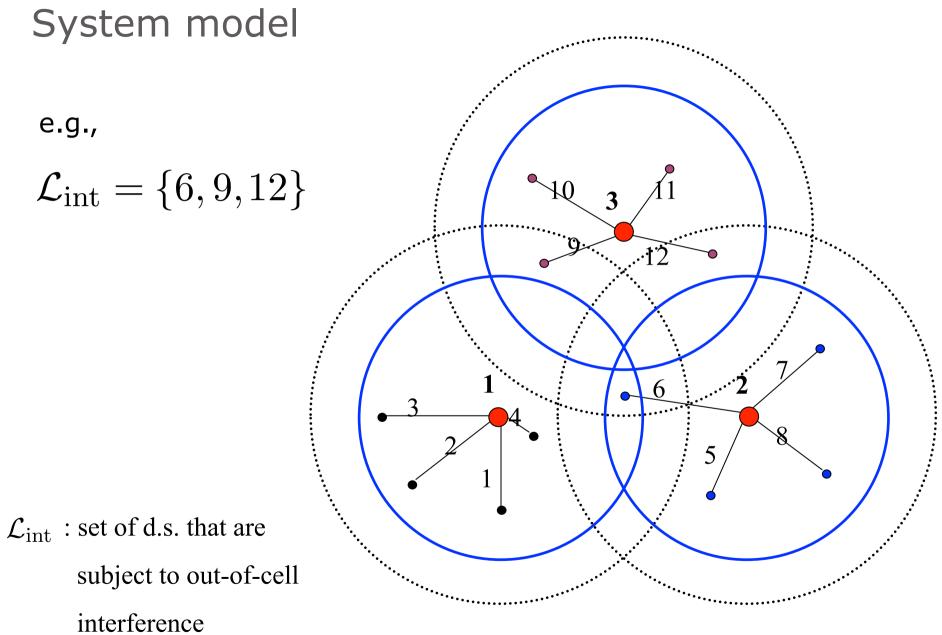
received SINR of rec(l)

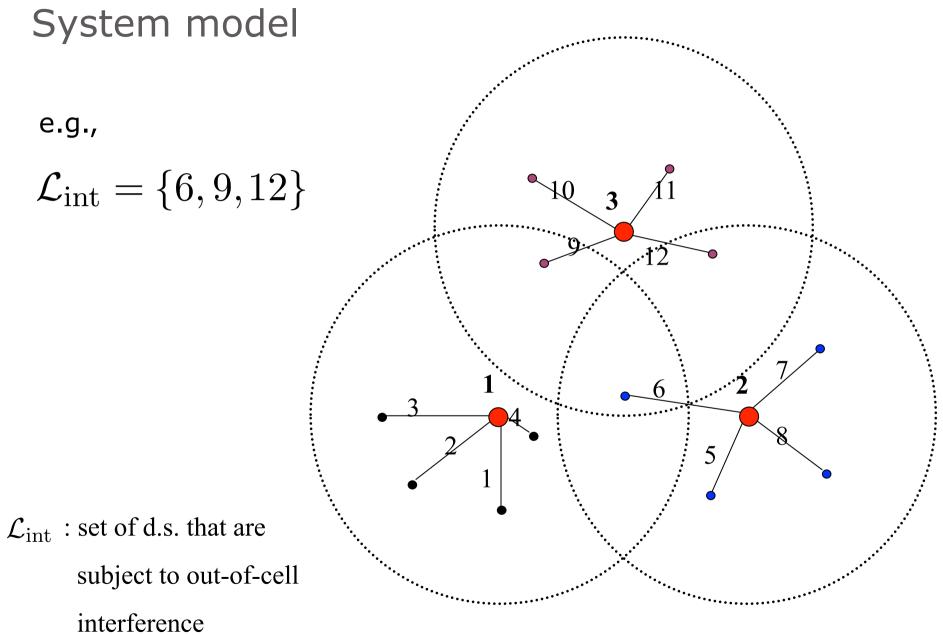


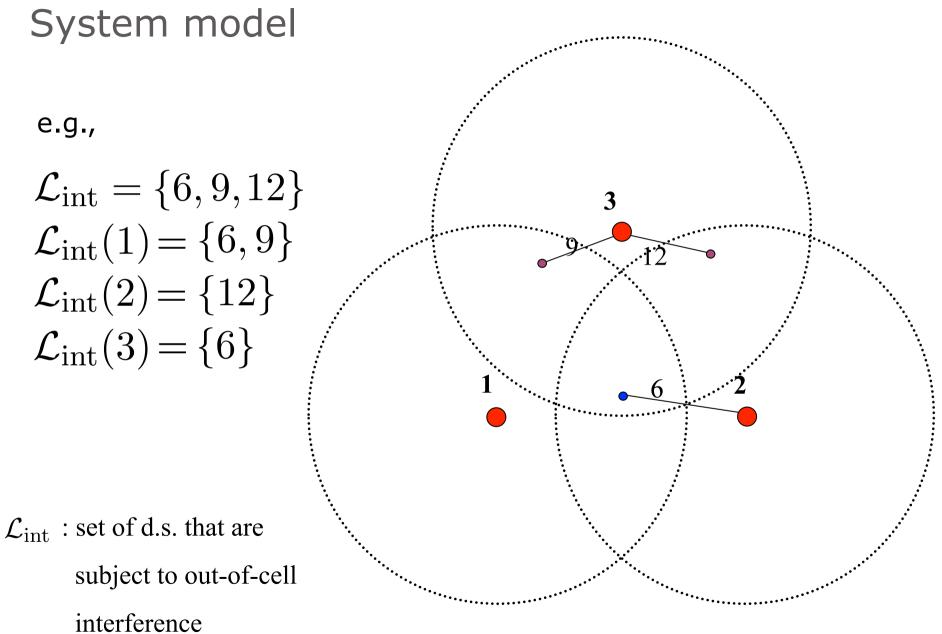
 z_{il} : out-of-cell interference power (complicating variables)

 $\mathcal{N}_{int}(l)$: set of out-of-cell interfering BSs that interferes rec(l)









Problem formulation

$$\begin{array}{l} \text{minimize } -\sum_{n \in \mathcal{N}} \sum_{l \in \mathcal{L}(n)} \beta_l \log \left(1 + \frac{p_l |\mathbf{h}_{ll}^{\mathrm{H}} \mathbf{v}_l|^2}{\sigma_l^2 + \sum\limits_{j \in \mathcal{L}(tran(l)), j \neq l} p_j |\mathbf{h}_{ll}^{\mathrm{H}} \mathbf{v}_j|^2 + \sum\limits_{i \in \mathcal{N}_{\mathrm{int}}(l)} z_{il} \right) \\ \text{subject to } z_{il} = \sum_{j \in \mathcal{L}(i)} p_j |\mathbf{h}_{jl}^{\mathrm{H}} \mathbf{v}_j|^2, \ l \in \mathcal{L}_{\mathrm{int}}, \ i \in \mathcal{N}_{\mathrm{int}}(l) \\ \sum_{l \in \mathcal{L}(n)} p_l ||\mathbf{v}_l||_2^2 \leq p_n^{\max}, \ n \in \mathcal{N} \\ ||\mathbf{v}_l||_2 = 1, \quad p_l \geq 0, \ l \in \mathcal{L} , \end{array}$$

variables: $\{p_l, \mathbf{v}_l\}_{l \in \mathcal{L}}$ and $\{z_{il}\}_{l \in \mathcal{L}_{int}, i \in \mathcal{N}_{int}(l)}$

Primal decomposition

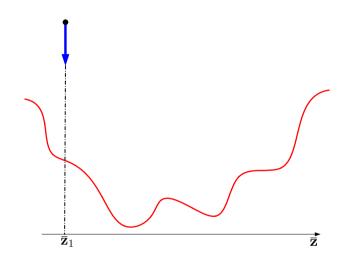
subproblems (for all $n \in \mathcal{N}$) :

$$\begin{array}{ll} \text{minimize} & -\sum_{l \in \mathcal{L}(n)} \beta_l \log \left(1 + \frac{p_l |\mathbf{h}_{ll}^{\mathrm{H}} \mathbf{v}_l|^2}{\sigma_l^2 + \sum\limits_{j \in \mathcal{L}(n), j \neq l} p_j |\mathbf{h}_{ll}^{\mathrm{H}} \mathbf{v}_j|^2 + \sum\limits_{i \in \mathcal{N}_{\mathrm{int}}(l)} z_{il} \right) \\ \text{subject to} & z_{il} \geq \sum_{j \in \mathcal{L}(i)} p_j |\mathbf{h}_{jl}^{\mathrm{H}} \mathbf{v}_j|^2, \ l \in \mathcal{L}_{\mathrm{int}}(n) \\ & \sum_{l \in \mathcal{L}(n)} p_l ||\mathbf{v}_l||_2^2 \leq p_n^{\max} \\ ||\mathbf{v}_l||_2 = 1, \quad p_l \geq 0, \ l \in \mathcal{L}(n) \end{array}$$

variables: $\{p_l, \mathbf{v}_l\}_{l \in \mathcal{L}(n)}$

master problem: minimize $\sum_{n \in \mathcal{N}} f_n(\mathbf{z})$ subject to $\mathbf{z} \succeq \mathbf{0}$, variables: $\mathbf{z} = \{z_{nl}\}_{n \in \mathcal{N}, l \in \mathcal{L}_{int}(n)}$

Subproblem (BS optimization)



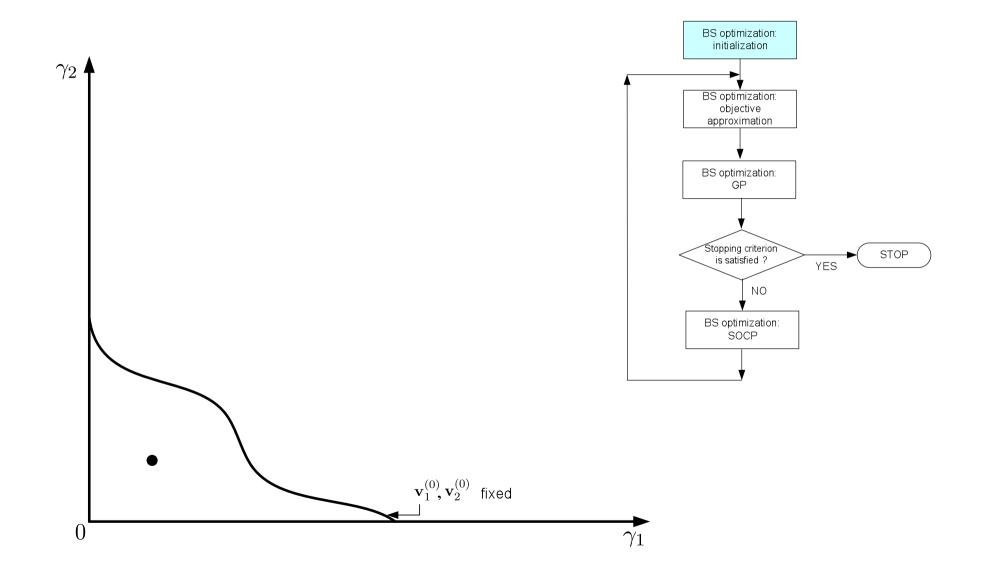
Subproblem

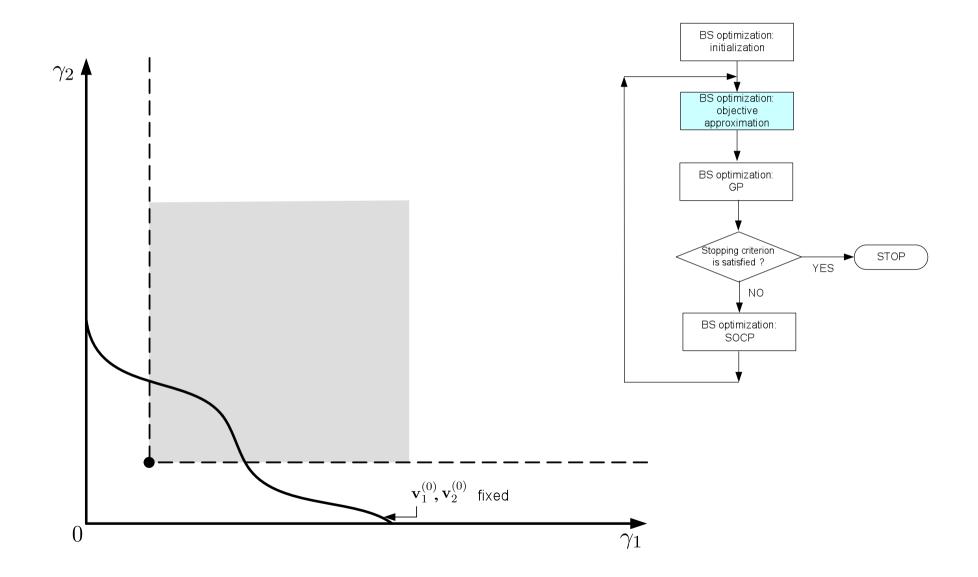
$$\begin{split} \text{minimize} \quad & -\sum_{l \in \mathcal{L}(n)} \beta_l \log \left(1 + \gamma_l \right) \\ \text{subject to} \quad & \gamma_l \leq \frac{p_l |\mathbf{h}_{ll}^{\mathrm{H}} \mathbf{v}_l|^2}{\sigma_l^2 + \sum_{j \in \mathcal{L}(n), j \neq l} p_j |\mathbf{h}_{ll}^{\mathrm{H}} \mathbf{v}_j|^2 + \sum_{i \in \mathcal{N}_{\mathrm{int}}(l)} z_{il}} , \ l \in \mathcal{L}(n) \\ & z_{il} \geq \sum_{j \in \mathcal{L}(i)} p_j |\mathbf{h}_{jl}^{\mathrm{H}} \mathbf{v}_j|^2, \ l \in \mathcal{L}_{\mathrm{int}}(n) \\ & \sum_{l \in \mathcal{L}(n)} p_l ||\mathbf{v}_l||_2^2 \leq p_n^{\max} \\ ||\mathbf{v}_l||_2 = 1, \quad p_l \geq 0, \ l \in \mathcal{L}(n) \end{split}$$

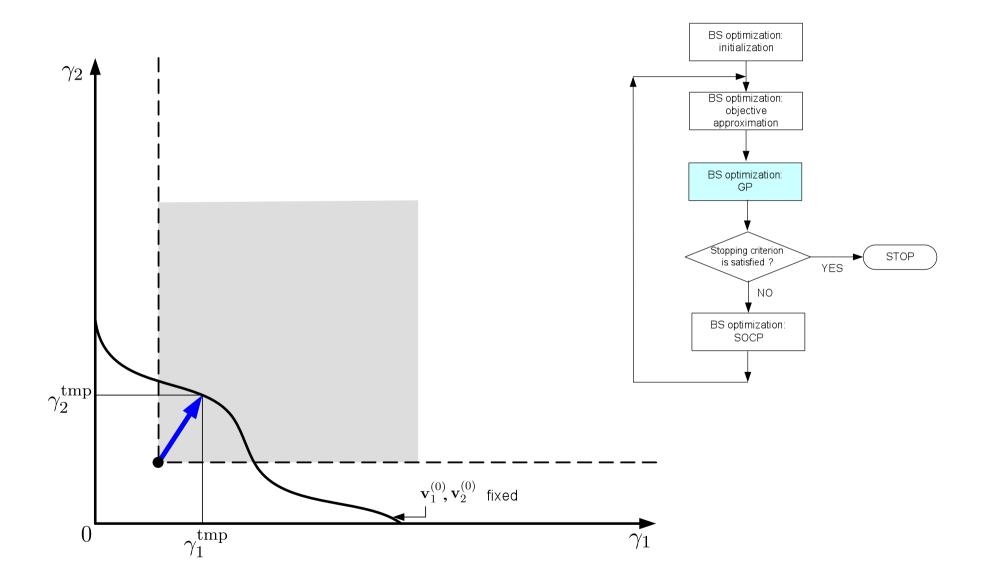
variables: $\{p_l, \gamma_l, \mathbf{v}_l\}_{l \in \mathcal{L}(n)}$

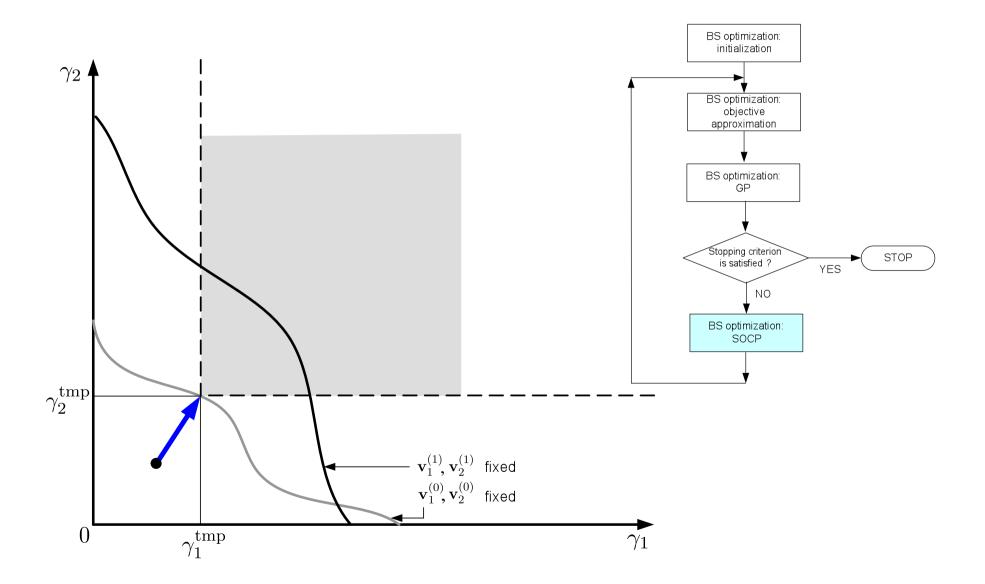
- The problem above is NP-hard
- Suboptimal methods, approximations

- The method is inspired from alternating convex optimization techniques
- Fix beamforming directions $\{\mathbf{v}_l\}_{l \in \mathcal{L}(n)}$
- Approximate objective $-\sum_{l \in \mathcal{L}(n)} \beta_l \log(1 + \gamma_l)$ by an UB function
 - resultant problem is a **GP**; variables $\{p_l, \gamma_l\}_{l \in \mathcal{L}(n)}$
- Fix the resultant SINR values $\{\gamma_l\}_{l \in \mathcal{L}(n)}$
- Find beamforming directions {v_l}_{l∈L(n)} that can preserve the SINR values with a **power margin**
 - this can be cast as a SOCP
- Iterate until a stopping criterion is satisfied

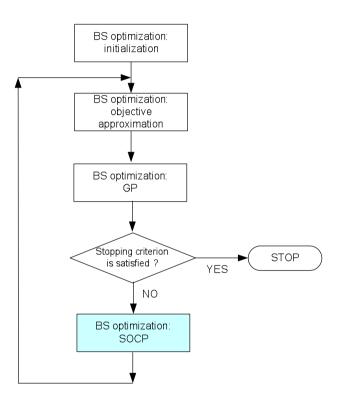




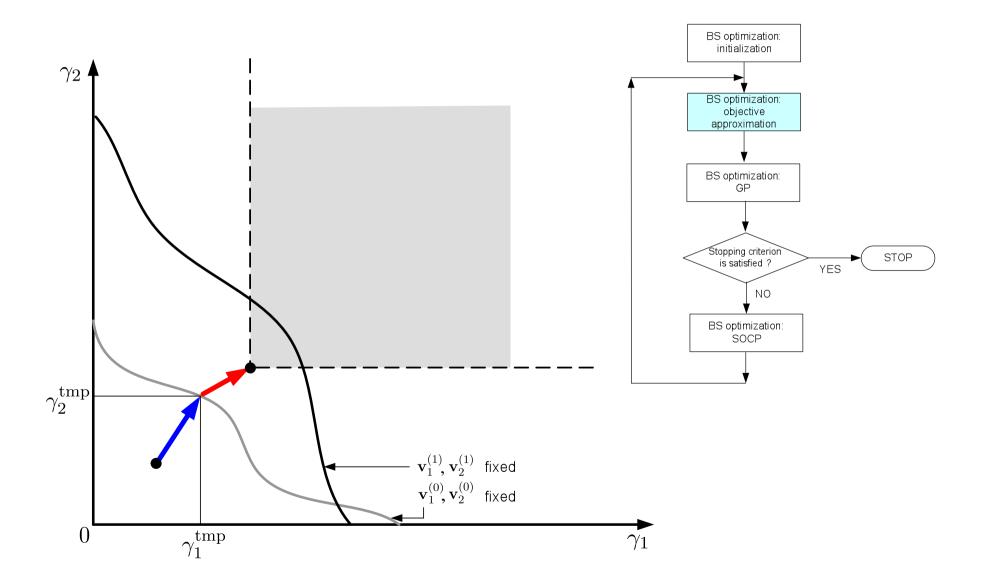




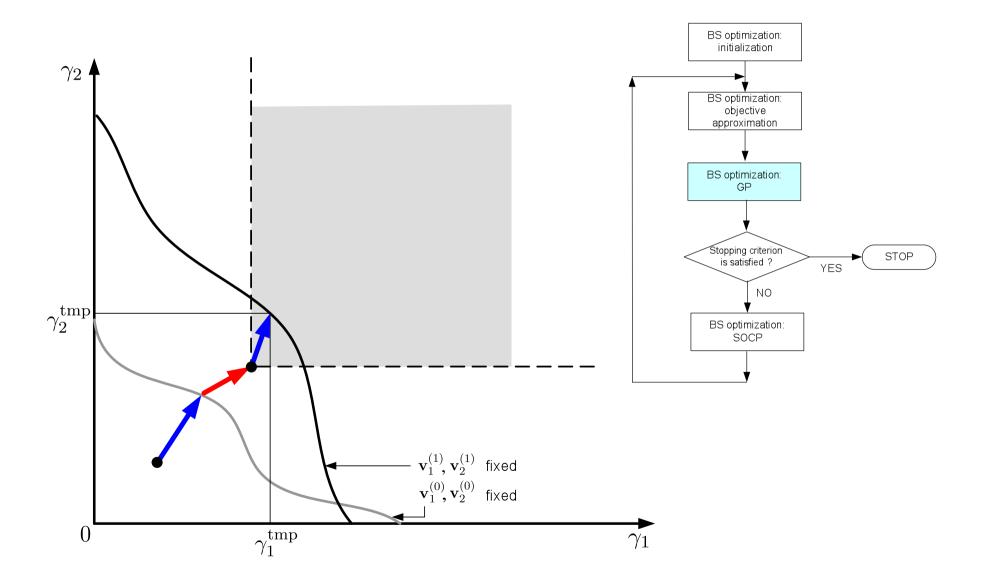
Subproblem: key idea



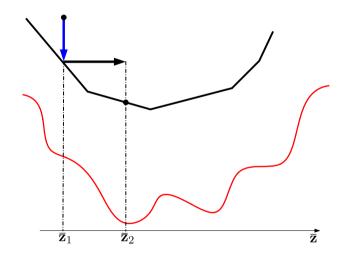
Subproblem: key idea



Subproblem: key idea



Master problem



Master problem

minimize $\sum_{n \in \mathcal{N}} f_n(\mathbf{z})$ subject to $\mathbf{z} \succeq \mathbf{0}$, variables: $\mathbf{z} = \{z_{nl}\}_{n \in \mathcal{N}, l \in \mathcal{L}_{int}(n)}$

- Recall: subproblems are NP-hard -> we cannot even compute the master objective value
- Suboptimal methods, approximations
- Problem is nonconvex -> subgradient method alone fails

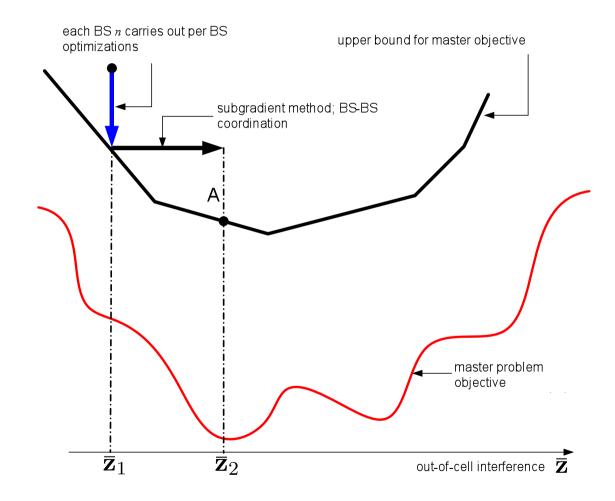
Master problem: key idea

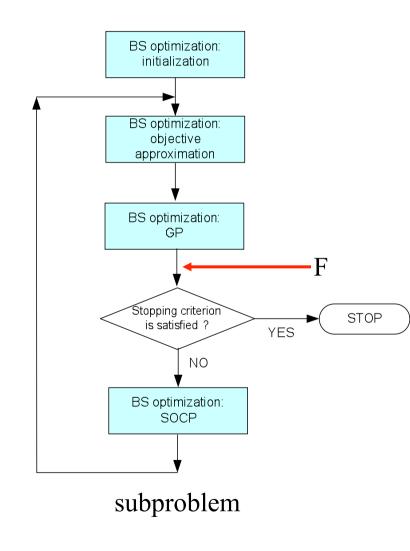
 The method is inspired from sequential convex approximation (upper bound) techniques

 subgradient method is adopted to solve the resulting convex problems

Increasingly important:

- convex approximations mentioned above are such that we can always rely on the results of BS optimizations to compute a subgradient for the subgradient method.
- thus, coordination of the BS optimizations

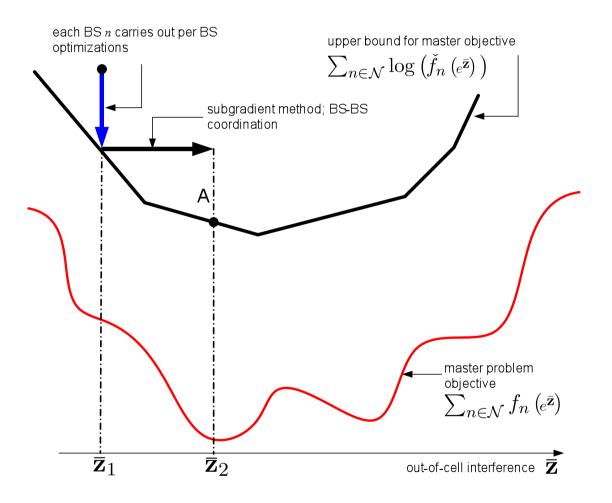




- out-of-cell interference: z
- objective value computed by BS n at 'F' : $\check{f}_n(\mathbf{z})$
- we can show that

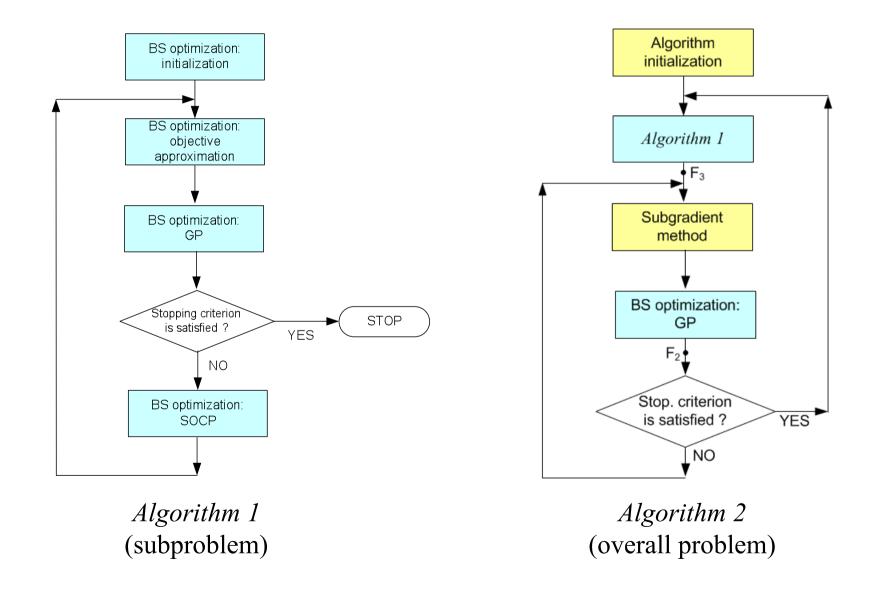
$$\sum_{n \in \mathcal{N}} f_n\left(\mathbf{z}\right) \leq \sum_{n \in \mathcal{N}} \log\left(\check{f}_n\left(\mathbf{z}\right)\right)$$
$$\sum_{n \in \mathcal{N}} f_n\left(e^{\bar{\mathbf{z}}}\right) \leq \underbrace{\sum_{n \in \mathcal{N}} \log\left(\check{f}_n\left(e^{\bar{\mathbf{z}}}\right)\right)}_{\text{convex}}$$

 optimal sensitivity values of GP -> construct subgradient

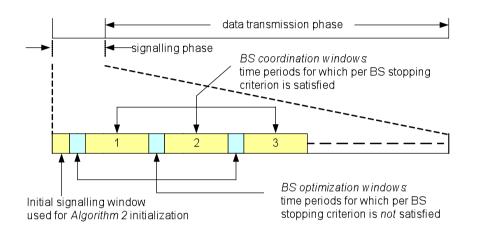


subgradient method:

 $\bar{z}_{il}^{(j+1)} = \bar{z}_{il}^{(j)} - \theta^{(j)} \sum_{n \in \mathcal{N}} d_{il}^n (\bar{\mathbf{z}}^{(j)})$



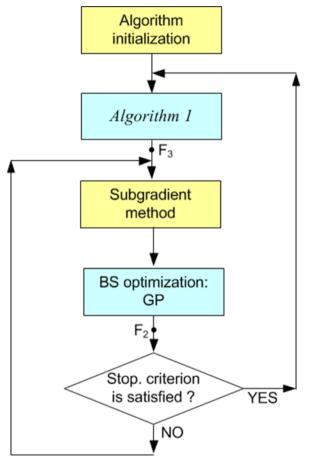
An example signaling frame structure



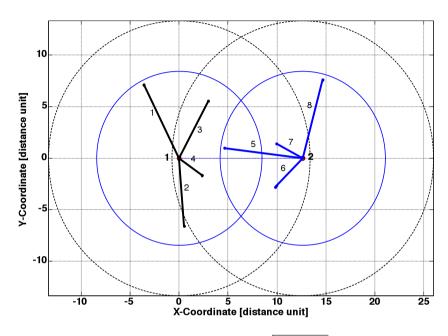
note: in *Alg.1* or subgradient method, 'BS optimization GP' is always carried out

in our simulations:

- fixed Alg.1 iterations (J_{BS-opt})
- fixed subgrad iterations ($J_{subgrad}$) per switch

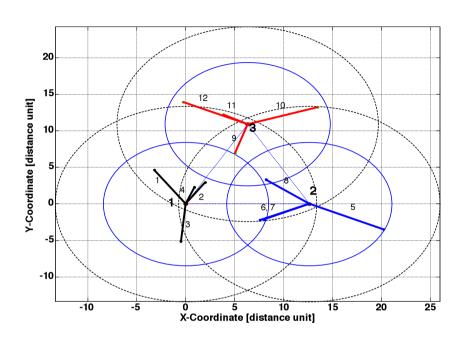


Algorithm 2 (overall problem)



channel gains: $\mathbf{h}_{ij} = \sqrt{{d_{ij}}^{-4}} \mathbf{c}_{ij}$

 d_{ij} : distance from tran(i) to rec(j) \mathbf{c}_{ij} : small scale fading coefficients



SNR operating point:

$$SNR(d) = \begin{cases} \frac{p_0^{\max}}{\sigma_0^2} & d \le 1\\ \frac{p_0^{\max}}{\sigma_0^2} & d^{-4} & \text{otherwise} \end{cases}$$
$$p_0^{\max} / \sigma_0^2 = 45 \text{dB}, \ D_{\text{BS}} = 1.5 R_{\text{BS}} \\ SNR(R_{\text{BS}}) = 8 \text{dB}, \ SNR(R_{\text{int}}) = 0 \text{dB} \end{cases}$$

Init.

Alg. 1

Subgrad

GP

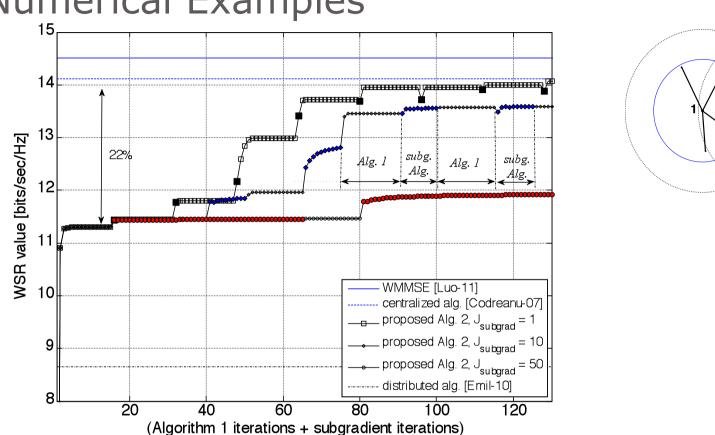
?

INO

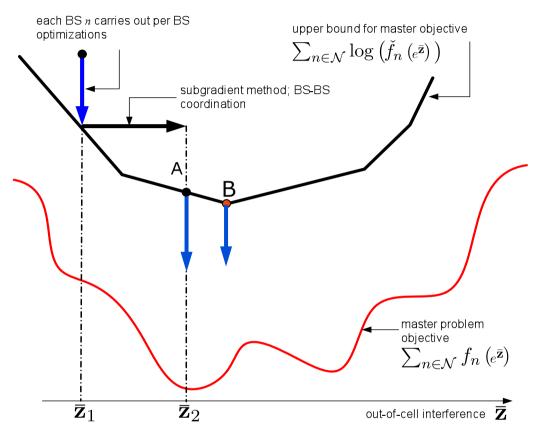
YES

F₂

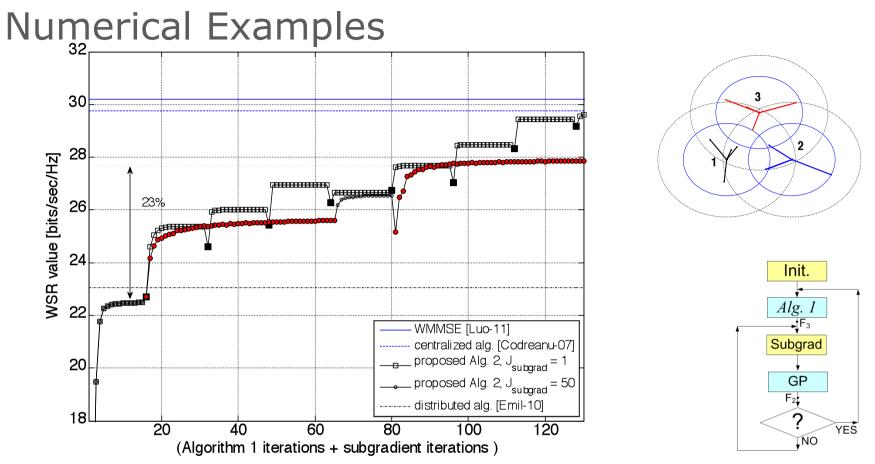
⊢F₃



- $J_{\rm subgrad}$ -> the degree of BS coordination
- note -> subgradient is not an ascent method
- out-of-cell interference is resolved -> objective value is increased
- smaller J_{subgrad} performs better compared to large J_{subgrad}
- light backhaul signaling

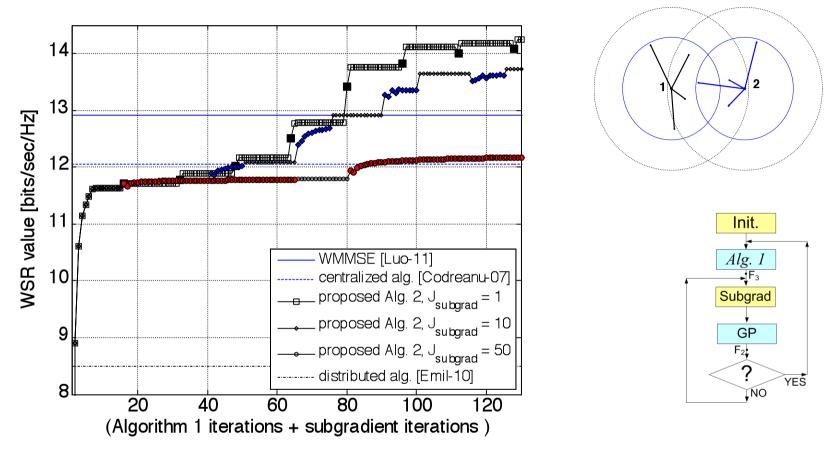


- accuracy of the solution of an approximated master problem is irrelevant in the case of overall algorithm
- refining the approximation more often is more beneficial

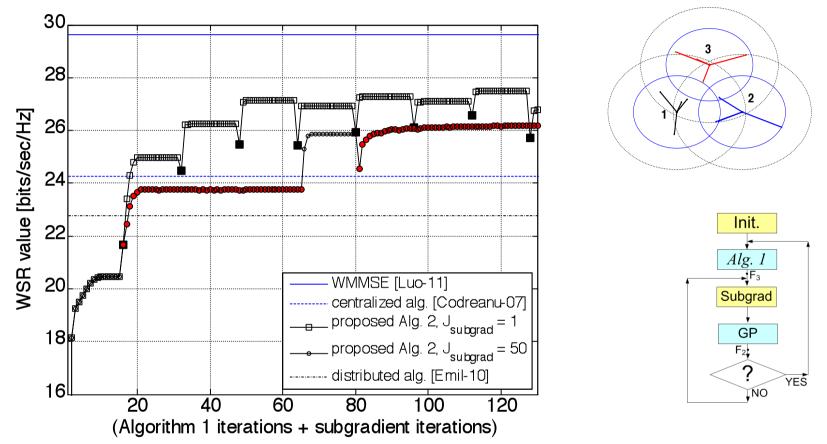


same behavior

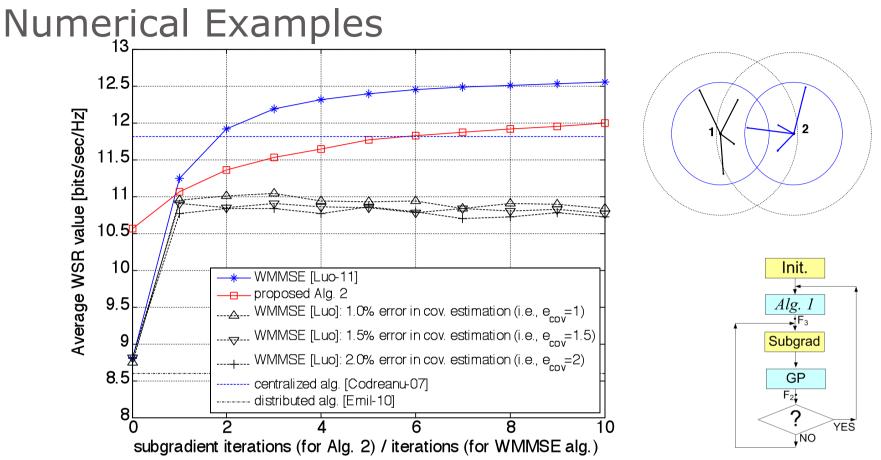
smaller J_{subgrad} performs better compared to large



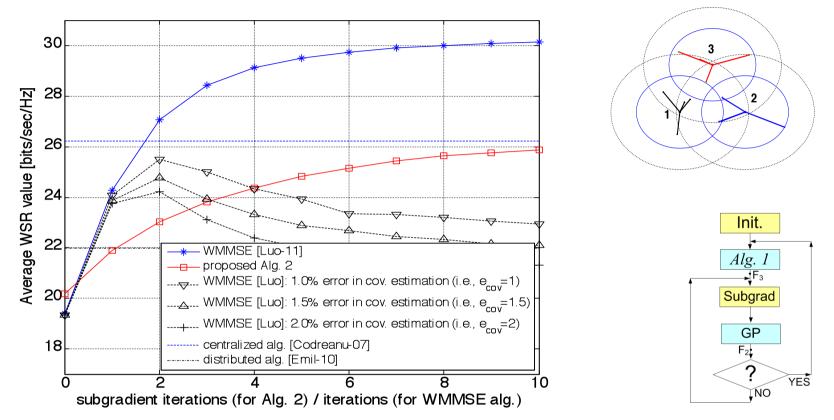
- algorithm performs better than the centralized algorithm
- not surprising since both algorithms are suboptimal algorithms



- algorithm performs better than the centralized algorithm
- not surprising since both algorithms are suboptimal algorithms



- $J_{subgrad} = 1$; one subgradient iteration during BS coordination window
- **12%** improvement within 5 BS coordination
- 99% of the centralized value within 5 BS coordination
- WMMSE performs better with no errors in user estimates
- WMMSE with even 1% error in signal covariance estimations at user perform poorly



- $J_{subgrad} = 1$; one subgradient iteration during BS coordination window
- 24% improvement within 5 BS coordination
- 94% of the centralized value within 5 BS coordination
- WMMSE performs better with no errors in user estimates
- WMMSE with even 1% error in signal covariance estimations at user perform poorly

Conclusions

- **Problem:** WSRMax for MISO interfering BC channel (NP-hard)
- **Techniques:** Primal decomposition
- Result: many subproblems (one for each BS) coordinating to find a suboptimal solution of the original problem
- Subproblem: alternating convex approximation techniques, GP, and SOCP
- Master problem: sequential convex approximation techniques and subgradient

method

- Coordination: BS-BS (backhaul) signaling; favorable for practical implementation
- Substantial improvements with a small number of BS coordination
 -> favorable for practical implementation
- Numerical examples -> algorithm performance is significantly close to

(suboptimal)

centralized solution methods