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Abstract—The cross-layer utility maximization problem, which
is subject to stability constraints for a multicommodity wireless
network where all links share the same number of orthogonal
channels, is considered in this paper. We assume a time-slotted
network, where the channel gains randomly change from one
slot to another. The optimal cross-layer network control policy
can be decomposed into the folloing three subproblems: 1) flow
control; 2) next-hop routing and in-node scheduling; and 3) power
and rate control, which is also known as resource allocation (RA).
These subproblems span the layers from the physical layer to the
transport layer. In every time slot, a network controller decides
the amount of each commodity data admitted to the network
layer, schedules different commodities over the network’s links,
and controls the power and rate allocated to every link in every
channel. To fully exploit the available multichannel diversity, we
consider the general case, where multiple links can be activated in
the same channel during the same time slot, and the interference
is controlled solely through power and rate control. Unfortunately,
the RA subproblem is not yet amendable to a convex formulation,
and in fact, it is NP-hard. The main contribution of this paper
is to develop efficient RA algorithms for multicommodity multi-
channel wireless networks by applying complementary geometric
programming and homotopy methods to analyze the quantitative
impact of gains that can be achieved at the network layer in terms
of end-to-end rates and network congestion by incorporating
different RA algorithms. Although the global optimality of the
solution cannot be guaranteed, the numerical results show that the
proposed algorithms perform close to the (exponentially complex)
optimal solution methods. Moreover, they efficiently exploit the
available multichannel diversity, which provides significant gains
at the network layer in terms of end-to-end rates and network
congestion. In addition, the assessment of the improvement in
performance due to the use of multiuser detectors at the receivers
is provided.

Index Terms—Backpressure, complementary geometric pro-
gramming (CGP), cross-layer optimization, fairness, homotopy
methods, multichannel diversity, network (NW)-layer capacity
region, network utility maximization (NUM), resource allocation
(RA), signomial programming (SP).
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I. INTRODUCTION

IN THE late 1990s, Kelly et al. [1], [2] introduced the
concept of network utility maximization (NUM) for fairness

control in wireline networks (NWs). It was shown that maxi-
mizing the sum rate under the fairness constraint is equivalent
to maximizing certain NW utility functions, and different NW
utility functions can be mapped to different fairness criteria.
In [3]–[7], Lin and Shroff, Neely et al., Stolyar, and Eryilmaz
and Srikant extended Kelly’s NUM framework to cover certain
aspects of wireless NWs. It has been shown that an optimal
cross-layer control policy, which achieves data rates that
are arbitrarily close to the optimal operating point, can
be decomposed into three subproblems that are normally
associated with different NW layers. In particular, flow control
resides at the transport layer, routing and in-node scheduling1

resides at the NW layer, and resource allocation (RA) is
usually associated with the medium access control (MAC) and
physical (PHY) layers [4].

The first two subproblems are convex optimization problems
and can relatively easily be solved. Under reasonably mild
assumptions, the RA subproblem can be cast as a general
weighted sum-rate maximization over the instantaneous achiev-
able rate region [4], [8]–[11]. The weights of the links are given
by the differential backlogs, and the policy resembles the well-
known backpressure algorithm introduced by Tassiulas and
Ephremides in [12], [13] and further extended in [9], [14], and
[15] to dynamic NWs with power control. In the case of wire-
less NWs, the achievable rates on the links are interdependent
due to interference, i.e., the achievable rate of a particular link
depends on the powers allocated to all other links. This coupling
makes the RA subproblem a difficult nonconvex optimization
problem [16]. In fact, it is NP-hard [17]. Roughly speaking,
this means that, by employing global optimization approaches
[18]–[20], the worst-case computational complexity for solving
the RA subproblem more than polynomially increases with the
number of variables. Therefore, the RA subproblem appears
to be a thorny problem in cross-layer utility maximization
for wireless NWs, and certainly, it deserves efficient algo-
rithms that, although suboptimal, perform well in practice.
In this paper, we develop such RA algorithms for general
wireless NWs by applying homotopy methods (or continuation
methods) [21] together with complementary geometric prog-
ramming (CGP) [22].

1In-node scheduling refers to selecting the appropriate commodity, and it
should not be confused with the links scheduling mechanism, which is handled
by the RA subproblem [8].
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A. Previous Work

In general cross-layer utility maximization problems, as
proposed in [3]–[8], [10], and [11], the main focus resided
in deriving optimal cross-layer control policies. Thus, very
little attention has particularly been made on the PHY-layer
RA subproblem. Optimal solution methods for solving similar
problems based on exhaustive search or branch-and-bound
techniques [18]–[20] have been proposed in [23]–[27]. Un-
fortunately, the computational complexity of these methods is
prohibitively expensive, even for the offline optimization of
moderate-size NWs. Several approximations have been pro-
posed for the case when all links in the NW operate in cer-
tain signal-to-interference-plus-noise ratio (SINR) regions. For
example, the assumption that the achievable rate is a linear
function of the SINR (i.e., a low-SINR region) is widely used
in ultrawideband systems [28]–[30]. In addition, [3], [31], and
[32] provide solutions for the power and rate control in low-
SINR regions. A high-SINR (HSINR) region is treated in [33]–
[35]. However, at the optimal operating point, different links
correspond to different SINR regions, which is usually the case
for multihop NWs. Therefore, all aforementioned methods that
are based on either the low-SINR or the HSINR assumption
can fail to solve the general problem. One promising method
is to cast the problem into a signomial programming (SP)
formulation [36, Sec. 9] or into a CGP [22], where a suboptimal
solution can quite efficiently be obtained.2 Applications of SP
and CGP solution methods have been demonstrated in various
signal-processing and digital communications problems, e.g.,
[37]–[40]. Note that CGP cannot handle the self-interference
problem that arises when a node simultaneously transmits and
receives in the same frequency band. That is, for general mul-
tihop wireless NWs, the RA subproblem must also cope with
the self-interference problem. Thus, only subsets of mutually
exclusive links can simultaneously be activated to avoid the
large self interference that is encountered if a node transmits
and receives in the same frequency band [41]–[43]. Under such
circumstances, SP/CGP cannot directly be applicable, even to
obtain a better suboptimal solution, because the initialization
of the algorithms plays a major role. If we still want to apply
CGP for RA in general multihop NWs, all subsets of mutually
exclusive links should be considered. This approach, in turn,
induces a combinatorial nature for the RA subproblem. Nev-
ertheless, SP/CGP solution methods are of crucial importance
from both the theoretical and the practical perspectives because,
in practice, we often encounter interference channels where
neither low-SINR nor HSINR approximations are justifiable.

B. Our Contributions

In this paper, we develop efficient RA algorithms for mul-
ticommodity multichannel multihop wireless NWs by using
homotopy methods [21] and CGP [22]. The proposed methods
handle the self-interference problem such that the combinato-
rial nature of the problem is circumvented. Our RA problem
formulation is fairly general, and it allows frequency reuse

2Note that we can readily convert an SP to a CGP and vice versa
[37, Sec. 2.2.5].

by simultaneously activating multiple links in the same chan-
nel. Here, the interference is solely controlled through power
control. Furthermore, our formulation allows the possibility
of exploiting multichannel diversity through dynamic power
allocation across the available channels. In addition, we quanti-
tatively analyze the gains that can be achieved at upper layers in
terms of end-to-end rates and NW congestion by incorporating
different RA algorithms within Neely’s cross-layer utility max-
imization framework [8], [9]. Recall that the RA subproblem is
NP-hard and that we have to rely on exponentially complex
global optimization techniques [18]–[20] to yield the optimal
solution. Nevertheless, the numerical results show that the
proposed RA algorithms perform close to global optimization
methods. We further test our algorithms by applying them
in large RA problems, where global optimization methods
[23]–[27] cannot be used due to prohibitive computational
complexity. Results show that the proposed algorithms can
provide significant gains at the NW layer in terms of end-to-end
rates and NW congestion by efficiently exploiting the available
multichannel diversity. Finally, we consider different receiver
capabilities and evaluate the effect of the use of multiuser (MU)
detectors.

C. Organization and Notations

The rest of this paper is organized as follows. The system
model and the problem formulation are presented in Section II.
The proposed power control algorithms are presented in
Section III. In Section IV, we consider the case of increased
receiver capability. The numerical results are presented in
Section V, and Section VI concludes this paper.

Notations are as given follows. All boldface lowercase and
uppercase letters represent vectors and matrices, respectively,
and script letters represent sets. The notation [A]p,q denotes
the (p, q) entry of the matrix A, ei represents the ith standard
unit vector, R

m×n
+ denotes the set of m × n real matrices with

nonnegative entries, and R
n
+ denotes the cone of nonnegative

n-dimensional real vectors (the n-dimensional nonnegative or-
thant). We use the notation {·} to describe the variables inside
the brace either as a set or as a vector. E{·} denotes the statis-
tical expectation, and |X | denotes the cardinality of the set X .
In addition, ∇f denotes the gradient of function f , and ∇2f is
the second derivative (or Hessian matrix) of f . The superscript
(·)� is used to denote a solution of an optimization problem.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. NW Model

The wireless NW consists of a collection of nodes that can
send, receive, and relay data across wireless links. The set of
all nodes is denoted by N , and we label the nodes with the
integer values n = 1, . . . , N . A wireless link is represented
as an ordered pair (i, j) of distinct nodes. The set of links is
denoted by L, and we label the links with the integer values
l = 1, . . . , L. We define tran(l) as the transmitter node of
link l and rec(l) as the receiver node of link l. The existence
of a link l ∈ L implies that a direct transmission is possible
from node tran(l) to node rec(l). We assume that each node
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Fig. 1. Choosing the value of interference coefficients gij for i �= j and link
power gains, i.e., gii and gjj (the channel c and time t indices are omitted
for clarity), where A = {(i, j)}, gij = 1, gji = |hji|2, gii = |hii|2, and
gjj = |hjj |2.

can be equipped with multiple transceivers, i.e., any node can
simultaneously transmit to or receive from multiple nodes. We
define O(n) as the set of links that are outgoing from node
n and I(n) as the set of links that are incoming to node n.
Furthermore, we denote the set of transmitter nodes by T and
the set of receiver nodes by R, i.e., T = {n ∈ N|O(n) �= ∅}
and R = {n ∈ N|I(n) �= ∅}.

The NW is assumed to operate in slotted time, with the
slots normalized to integer values t ∈ {1, 2, 3, . . .}. All wireless
links share a set C of orthogonal channels, labeled with integers
c = 1, . . . , C. When there are several channels that indepen-
dently fade at any one time, there is a high probability that
one of the channels will be strong. Thus, the main motivation
for considering multiple channels is the exploitation of the
diversity that results from unequal link behavior across a given
wideband.

Let hijc(t) denote the channel gain from the transmitter of
link i to the receiver of link j in channel c during time slot t. We
assume that hijc(t) are constant for the duration of a time slot
and are independent and identically distributed over the time
slots, links, and channels. Let giic(t) represent the power gain
of link i in channel c during time slot t, i.e., giic(t) = |hiic(t)|2
(see Fig. 1). For any pair of distinct links i �= j, we denote
the interference coefficient from link i to link j in channel c
by gijc(t). For notational convenience, let A denote the set
of all link pairs (i, j) for which the transmitter of link i and
the receiver of link j coincide, i.e., A = {(i, j)i,j∈L| tran(i) =
rec(j)} (see Fig. 1). In other words, A represents the set of
all link pairs (i, j) for which i ∈ O(n) and j ∈ I(n) for some
n ∈ N . In the case of (i, j) ∈ A, gijc(t) represents the power
gain within the same node from its transmitter to its receiver and
is referred to as the self-interference gain (see Fig. 1). In partic-
ular, we let gijc(t) = 1 for all (i, j) ∈ A to model the very large
self interference that will affect the incoming links of a node if it
is simultaneously transmitted and received in the same channel.
For all pairs (i, j) of distinct links such that (i, j) �∈ A, the term
gijc(t) represents the power of the interference signal at the
receiver node of link j in channel c when one unit of power is
allocated to the transmitter node of link i in the same channel,
i.e., gijc(t) = |hijc(t)|2 for all (i, j) �∈ A (see Fig. 1). Note that,
according to relative distances between the NW’s nodes, gijc(t)
for all (i, j) ∈ A (i.e., the self-interference gains) can be several
orders of magnitude larger than gijc(t) for all (i, j) �∈ A (i.e.,
the power gains of links and the interference coefficients of
pairs of different links). The particular class of NW topologies,
for which A = ∅ (i.e., T ∩ R = ∅), is referred to as bipartite
NWs. On the other hand, the class of NW topologies, for which
A �= ∅ (i.e., T ∩ R �= ∅), is referred to as nonbipartite NWs.
Note that all multihop NWs are necessarily nonbipartite.

In every time slot, a NW controller decides the power and
rates allocated to each link in every channel. We denote by
plc(t) the power that is allocated to each link l in channel
c during time slot t. The power allocation is subject to a
maximum power constraint

∑
c∈C
∑

l∈O(n) plc(t) ≤ pmax
n for

each node n.
We first consider the case where all receivers perform single-

user detection3, and we assume that the achievable rate of link l
during time slot t is given by

rl(t)=
C∑

c=1

Wc log

(
1+

gllc(t)plc(t)
NlWc +

∑
j �=l gjlc(t)pjc(t)

)
, (1)

where Wc represents the bandwidth of channel c, and Nl is
the power spectral density of the noise at the receiver of link
l. Note that, for any link l, interference at rec(l) (i.e., the
term

∑
j �=l gjlc(t)pjc(t)) is created by self transmissions (i.e.,∑

j∈O(rec(l)) gjlc(t)pjc(t)), as well as by other node transmis-
sions (i.e.,

∑
j∈L\{O(rec(l))∪{l}} gjlc(t)pjc(t)). To simplify the

presentation, we assume in the rest of the paper that all channels
have equal bandwidths and the noise power density is the same
at all receivers4 (i.e., Wc = W for all c ∈ C and Nl = N0

for all l ∈ L). Let σ2 = N0W denote the noise power, which
is constant for all receivers in all channels. Furthermore, we
denote by P(t) ∈ R

L×C
+ the overall power allocation matrix,

i.e., plc(t) = [P(t)]l,c. The use of the Shannon formula for
the achievable rate in (1) is approximate in the case of finite-
length packets and is used to avoid the complexity of rate-power
dependence in practical modulation and coding schemes. This
practice is common, but note that this approach is not strictly
correct. However, as the packet length increases, it becomes
asymptotically correct.

B. NUM and Problem Formulation

Exogenous data arrive at the source nodes, and they are de-
livered to the destination nodes over several (possibly multihop)
paths. We identify the data by their destinations, i.e., all data
with the same destination are considered a single commodity,
regardless of the source. In fact, our formulation also permits
the anycast case, in which each packet exits the NW as soon
as any one of a particular destination set of nodes successfully
receives the packet. We label the commodities with integers
s = 1, . . . , S (S ≤ N), and the destination node of commodity
s is denoted by ds. For every node, we define Sn ⊆ {1, . . . , S}
as the set of commodities that can exogenously arrive at
node n.

A NUM framework that is similar to the framework in
[8, Sec. 5.1] is considered. In particular, exogenously arriving
data are not directly admitted to the NW layer. Instead, the
exogenous data are first placed in the transport-layer storage
reservoirs. To avoid complications that may arise, which are
extraneous to our problem, we assume that all commodities

3We say that a receiver uses single-user detection when it decodes each of its
intended signals by treating all other interfering signals as noise. Extensions to
more advanced multiuser detection techniques will be addressed in Section IV.

4The extension to the case of unequal bandwidths Wc and noise power
spectral densities Nl is straightforward.
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have infinite demand at the transport layer. Nevertheless, the
RA algorithms proposed in this paper are still applicable when
this assumption is relaxed. At each source node, a set of flow
controllers decides the amount of each commodity data admit-
ted every time slot in the NW. Let xs

n(t) denote the amount of
data of commodity s admitted in the NW at node n during time
slot t. At the NW layer, each node maintains a set of S internal
queues for storing the current backlog (or unfinished work)
of each commodity. Let qs

n(t) denote the current backlog of
commodity s data stored at node n. We formally let qs

ds
(t) = 0,

i.e., it is assumed that data that are successfully delivered to
their destination exit the NW layer. Associated with each node-
commodity pair (n, s)s∈Sn

, we define a concave nondecreasing
utility function us

n(y), which represents the “reward” that is
received by sending the data of commodity s from node n to
node ds at a long-term average rate of y [in bits per slot].

The NUM problem under stability constraints can be formu-
lated as [8, Sec. 5]

maximize
∑
n∈N

∑
s∈Sn

us
n (ys

n)

subject to {ys
n|n ∈ N , s ∈ Sn} ∈ Λ, (2)

where the optimization variables are ys
n, and Λ represents the

NW-layer capacity region.5

A dynamic cross-layer control algorithm that achieves a
utility and is arbitrarily close to the optimal value of (2) has
been introduced in [8, Sec. 5]. In particular, the algorithm
performance can be characterized as follows:

∑
n∈N

∑
s∈Sn

us
n (y�s

n )−lim inf
T→∞

∑
n∈N

∑
s∈Sn

us
n

(
1
T

∑
t=1:T

E{xs
n(t)}

)

≤ B

V
, (3)

where {y�s
n }n∈N ,s∈Sn

is the optimal solution of (2), B > 0 is a
well-defined constant, and V > 0 is an algorithm parameter that
can be used to control the tightness of the achieved utility to the
optimal value [8, Sec. 5.2.1]. The details are extraneous to the
central objective of this paper. Particularized to our NW model,
in every time slot t, the algorithm performs the following steps.

Algorithm 1: Dynamic cross-layer control algorithm
[8, Sec. 5.2]

1) Flow control. Each node n ∈ N solves the following
problem:

maximize
∑
s∈Sn

V us
n (xs

n) − xs
nqs

n(t)

subject to
∑
s∈Sn

xs
n ≤ Rmax

n , xs
n ≥ 0, (4)

5The network-layer capacity region Λ is the closure of the set of all
admissible arrival rate vectors that can stably be supported by the network,
considering all possible strategies for choosing the control variables to affect
routing, scheduling, and RA (including approaches with perfect knowledge of
future events) [8, p. 28].

where the variables are {xs
n}s∈Sn

. Set {xs
n(t) = xs

n}s∈Sn
.

The parameter V > 0 is a chosen parameter that affects
the algorithm performance [see (3)], and Rmax

n > 0 is
used to control the burstiness of data delivered to the NW
layer.

2) Routing and in-node scheduling. For each link l, let

βl(t) = max
s

{
qs
tran(l)(t) − qs

rec(l)(t), 0
}

c�
l (t) = arg max

s

{
qs
tran(l)(t) − qs

rec(l)(t), 0
}

. (5)

If βl(t) > 0, the commodity that maximizes the differen-
tial backlog, i.e., c�

l (t), is selected for potential routing
over link l. This approach is the well-known rule of next-
hop transmission under the backpressure algorithm [12].

3) RA. The power allocation P(t) is given by P, whose
entries plc solve the following problem:

maximize
∑
l∈L

βl(t)
∑
c∈C

log

⎛
⎜⎝1 +

gllc(t)plc

σ2 +
∑
j �=l

gjlc(t)pjc

⎞
⎟⎠

subject to
∑
c∈C

∑
l∈O(n)

plc ≤ pmax
n , n ∈ N

plc ≥ 0, l ∈ L, c ∈ C. (6)

Once the optimal power allocation P(t) has been deter-
mined, compute the rate allocation rl(t) for all l ∈ L by
using (1). The resulting rate rl(t) is offered to the data of
commodity c�

l (t).

In the first step, each node n determines the amount of data
of commodity s (i.e., xs

n(t) for all s ∈ Sn) that are admitted
in the NW based on the current backlogs (i.e., qs

n(t) for all
s ∈ Sn). In the second step, each node n computes βl and the
corresponding commodity c�

l (t) for all l ∈ O(n). The commod-
ity c�

l (t) is selected for potential routing over link l during
time slot t. Recall that in-node scheduling refers to selecting
the appropriate commodity, and it should not be confused with
the links-scheduling mechanism, which is handled by the RA
subproblem, i.e., step 3. The third step is the most difficult
part of Algorithm 1, which computes the power allocation
P(t) in each link l. Of course, P(t) implicitly determines the
links/channels that should be activated in every time slot t. The
power allocation P(t) is used to determine rl(t) [see (1)], and
the resulting link rate rl(t) is offered to the data of commodity
c�
l (t). Because our main contribution resides in the RA sub-

problem (6), extensive explanations of Algorithm 1 are avoided.
However, we refer the reader to [8, Sec. 5] for more details.

III. RESOURCE ALLOCATION SUBPROBLEM

In this section, we focus on the RA subproblem (6). By
using standard reformulation techniques, we first show that
the RA subproblem is equivalent to a CGP [22]. Then, we
obtain a successive approximation algorithm for RA in bipartite
NWs. Next, we explain the challenges of the RA subproblem



2794 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 6, JULY 2011

in nonbipartite NWs (e.g., multihop NWs) due to the self-
interference problem.6 Finally, we propose a solution method
based on homotopy methods [21] together with CGP, which
circumvents the aforementioned difficulties.

A. CGP Formalization of the RA Subproblem

Let us denote the objective function of (6) by f0(P). It can
be expressed as

f0(P) =
∑
l∈L

∑
c∈C

log

(
1 +

gllcplc

σ2 +
∑

j �=l gjlcpjc

)βl

(7)

= − log
∏
l∈L

∏
c∈C

(1 + γlc)
−βl , (8)

where the time index t was dropped for notational simplicity,
and γlc represents the SINR of link l in channel c, i.e.,

γlc =
gllcplc

σ2 +
∑

j �=l gjlcpjc
, l ∈ L, c ∈ C. (9)

Because log(·) is an increasing function, (6) can equivalently
be reformulated as

minimize
∏
c∈C

∏
l∈L

(1 + γlc)
−βl

subject to, γlc =
gllcplc

σ2 +
∑

j �=l gjlcpjc
, l ∈ L, c ∈ C

∑
c∈C

∑
l∈O(n)

plc ≤ pmax
n , n ∈ N

plc ≥ 0, l ∈ L, c ∈ C, (10)

where the variables are {plc, γlc}l∈L,c∈C . Now, we consider the
related problem, i.e.,

minimize
∏
c∈C

∏
l∈L

(1 + γlc)−βl

subject to γlc ≤ gllcplc

σ2 +
∑

j �=l gjlcpjc
, l ∈ L, c ∈ C

∑
c∈C

∑
l∈O(n)

plc ≤ pmax
n , n ∈ N

plc ≥ 0, l ∈ L, c ∈ C (11)

with the same variables {plc, γlc}l∈L,c∈C . Note that the equal-
ity constraints of (10) have been replaced with inequality
constraints. We refer to these inequality constraints as SINR
constraints for simplicity. Because the objective function of
(11) increases in each γlc, we can guarantee that, at any optimal
solution of (11), the SINR constraints must be active. Therefore,
we solve (11) instead of (10).

Finally, by introducing the auxiliary variables vlc ≤ 1 + γlc

and rearranging the terms, the RA subproblem (6) can be further

6When a node simultaneously transmits and receives in the same channel, its
incoming links are affected by very large self interference levels.

reformulated as

minimize
∏
c∈C

∏
l∈L

v−βl

lc

subject to vlc ≤ 1 + γlc, l ∈ L, c ∈ C

σ2g−1
llc p−1

lc γlc +
∑
j �=l

g−1
llc gjlcpjcp

−1
lc γlc

≤ 1, l ∈ L, c ∈ C∑
c∈C

∑
l∈O(n)

(pmax
n )−1 plc ≤ 1, n ∈ N

plc ≥ 0, l ∈ L, c ∈ C, (12)

which can be identified as a CGP [22].

B. Successive Approximation Algorithm for RA in Bipartite
NWs (A = ∅)

By inspecting (12), we notice the following three cases:
1) The objective is a monomial7 function; 2) the right-hand
side (RHS) terms of the first inequality constraints (i.e., 1 + γlc)
are posynomial functions; and 3) the left-hand side terms of all
the inequality constraints are either monomial or posynomial
functions. Note that, if the RHS terms of the first inequality con-
straints were monomial (instead of posynomial) functions, (12)
will become a geometric program (GP) in standard form. GPs
can be reformulated as convex problems, and they can very ef-
ficiently be solved, even for large-scale problems [36, Sec. 2.5].
These observations suggest that, by starting from an initial
point, we can search for a close local optimum by solving a
sequence of GPs that locally approximate the original problem
(12). At each step, the GP is obtained by replacing the posyn-
omial functions in the RHS of the first inequality constraints
with their best local monomial approximations near the solution
obtained at the previous step. The solution methods that are
achieved by monomial approximations [22], [36] can be consid-
ered to be a subset of a broader class of mathematical optimiza-
tion problems, which is known in the mathematical literature as
inner approximation algorithms for nonconvex problems [44].
The monomial approximation for the RHS terms of the first in-
equality constraints in (12) is described in the following lemma.

Lemma 1: For any γ > 0, let m(γ) = kγa be a monomial
function that is used to approximate s(γ) = 1 + γ near an
arbitrary point γ̂ > 0. Then, the following two conditions hold.

1) The parameters a and k of the best monomial local
approximation are given by

a = γ̂(1 + γ̂)−1, k = γ̂−a(1 + γ̂). (13)

2) s(γ) ≥ m(γ) for all γ > 0.
Proof: To show the first part, we note that the monomial

function m is the best local approximation of s near the
point γ̂ if

m(γ̂) = s(γ̂), m′(γ̂) = s′(γ̂). (14)

7See [36, Sec. 2.1] for the definition of monomial and posynomial functions.
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By replacing the expressions of m and s in (14), we obtain the
following system of equations:{

kγ̂a = 1 + γ̂
kaγ̂a−1 = 1 (15)

the solution of which is given by (13).
The second part follows from (14) and by noting that s(γ) is

affine and m(γ) is concave8 on R+. �
Now, we turn to the GP obtained by using the local approxi-

mation given by Lemma 1. The posynomial functions 1 + γlc of
the first inequality constraints of (12) are approximated near the
point γ̂lc. Consequently, the approximate inequality constraints
become

vlc ≤ klcγ
alc

lc , l ∈ L, c ∈ C, (16)

where alc and klc have the forms given in (13). Because the
objective function of (12) is a decreasing function of vlc, l ∈
L, c ∈ C, it can easily be verified that all of these modified
inequality constraints will be active at the solution of the GP.
Therefore, we can eliminate the auxiliary variables vlc and
rewrite the objective function of (12) as

∏
l∈L

∏
c∈C

v−βl

lc =
∏
l∈L

∏
c∈C

k−βl

lc γ−βlalc

lc = K
∏
l∈L

∏
c∈C

γ
−βl

γ̂lc
1+γ̂lc

lc , (17)

where K is a multiplicative constant that does not affect the
problem solution.

In the following sections, we base our development on
computationally efficient algorithms to obtain a suboptimal
solution for (11). For notational convenience, it is useful to
define the overall SINR matrices γ, γ̂ ∈ R

L×C
+ as [γ]l,c = γlc

and [γ̂]l,c = γ̂lc, respectively.
A very brief outline of the proposed successive approxima-

tion algorithm is given as follows. It solves an approximated
version of (12) in every iteration, and the algorithm consists of
repeating this step until convergence.

Algorithm 2: Successive approximation algorithm for RA
1) Initialization. Given tolerance ε > 0, a feasible power

allocation P0. Set i = 1. The initial SINR guess γ̂(i) is
given by (9).

2) Solve the GP

minimize K(i)
∏
l∈L

∏
c∈C

γlc

−βl

γ̂
(i)
lc

1+γ̂
(i)
lc

subject to α−1γ̂
(i)
lc ≤ γlc ≤ αγ̂

(i)
lc , l ∈ L, c ∈ C

σ2g−1
llc p−1

lc γlc +
∑
j �=l

g−1
llc gjlcpjcp

−1
lc γlc

≤ 1, l ∈ L, c ∈ C∑
c∈C

∑
l∈O(n)

(pmax
n )−1 plc ≤ 1, n ∈ N (18)

8The concavity of m(γ) follows from the fact that k > 0 and 0 < a < 1
[45, Sec. 3.1.5].

with the positive variables {plc, γlc}l∈L,c∈C . Denote the
solution by {p�

lc, γ
�
lc}l∈L,c∈C .

3) Stopping criterion. If max(l,c)∈L×C |γ�
lc − γ̂

(i)
lc | ≤ ε, stop;

otherwise, go to step 4.
4) Set i = i + 1, {γ̂(i)

lc = γ�
lc}l∈L,c∈C , and go to step 2.

The first step initializes the algorithm, and an initial feasible
SINR guess γ̂(i) is computed. For bipartite NWs, there is no
self-interference problem, and a simple uniform power alloca-
tion can be used.

The second step solves an equivalent GP approximation of
(12) around the current guess γ̂(i) [see (18)]. Note that the
auxiliary variables {vlc}c∈C,l∈L of (12) are eliminated and the
objective function of (12) is replaced by using the monomial
approximation at γ̂(i), as given in (17).9 These monomial ap-
proximations are sufficiently accurate only in the closer vicinity
of the current guess γ̂(i). Therefore, the first set of inequality
constraints are added to confine the domain of variables γ to
a region around the current guess γ̂(i) [46]. The first set of
inequality constraints of (18) are sometimes called trust region
constraints [36], [46], which are not originally introduced in
[22]. Therefore, Algorithm 2 is a slightly modified version of
the solution method proposed in [22]. The parameter α > 1
controls the desired approximation accuracy. However, it also
influences the convergence speed of Algorithm 2. At every step,
each entry of the current SINR guess γ̂(i) can be increased or
decreased at most by a factor α. Thus, a value of α that is close
to 1 provides good accuracy for the monomial approximations,
at the cost of slower convergence speed, whereas a value much
that is larger than 1 improves the convergence speed, at the
cost of reduced accuracy. In most practical cases, a fixed value
α = 1.1 offers a good speed/accuracy tradeoff [36].

The third step checks whether the SINRs {γ�
lc}l∈L,c∈C that

are obtained from the solution of (18) have significantly been
changed compared to the entries of the current guess γ̂(i). If
there are no substantial changes, then the algorithm terminates,
and the link rate rl(t) =

∑C
c=1 Wc log(1 + γ�

lc) is offered to the
data of commodity c�

l (t) [given by (5)]. Otherwise, the solution
{γ�

lc}l∈L,c∈C is taken as the current guess, and the algorithm
repeats steps 2–4 until convergence.

Note that the auxiliary variables {vlc}c∈C,l∈L were only used
to reformulate (11) as a CGP [22], i.e., (12), but they do not ap-
pear in Algorithm 2. In fact, an identical algorithm results if, at
each step, the objective function of (11) is locally approximated
by a monomial function. This alternative derivation, which is
known in the optimization literature as SP [36], is presented in
Appendix A.

The convergence of the algorithm to a Kuhn–Tucker solution
of the original nonconvex problem (12) is guaranteed [44,
Th. 1], because Algorithm 2 falls into the broader class of
mathematical optimization problems, i.e., inner approximation
algorithms for nonconvex problems [44].

One interesting and important remark is that the objective
function of the approximated problem (18) in each iteration i

9Recall that K(i) is a multiplicative constant that does not influence the
solution of (18).
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yields an upper bound on the objective function of the original
problem (11), i.e.,

K(i)
∏
l∈L

∏
c∈C

γlc

−βl

γ̂
(i)
lc

1+γ̂
(i)
lc ≥

∏
l∈L

∏
c∈C

(1 + γlc)−βl (19)

for {γlc > 0}l∈L,c∈C , with equality when γ = γ̂(i). This case
directly follows from the second statement of Lemma 1. By
using (19), we can immediately show that Algorithm 2 is
monotonically decreasing. The monotonicity of Algorithm 2 is
established by the following theorem.

Theorem 1: Let i and i + 1 be any consecutive iteration of
Algorithm 2. Let γ̂(i) and γ̂(i+1) be the SINR guesses at the
beginning of each iteration, respectively. Then∏

l∈L

∏
c∈C

(
1 + γ̂

(i)
lc

)−βl

≥
∏
l∈L

∏
c∈C

(
1 + γ̂

(i+1)
lc

)−βl

. (20)

Proof: To show this proof, we write the following
relations:

∏
l∈L

∏
c∈C

(
1 + γ̂

(i)
lc

)−βl

=K(i)
∏
l∈L

∏
c∈C

(
γ̂

(i)
lc

)−βl

γ̂
(i)
lc

1+γ̂
(i)
lc (21)

≥K(i)
∏
l∈L

∏
c∈C

(
γ̂

(i+1)
lc

)−βl

γ̂
(i)
lc

1+γ̂
(i)
lc (22)

≥
∏
l∈L

∏
c∈C

(
1 + γ̂

(i+1)
lc

)−βl

, (23)

where (21) follows from (19) and (22) because γ̂(i+1) is the
solution of (18), and (23) again follows from (19). �

Therefore, we immediately see that Algorithm 2 always
yields a solution that is at least as good as the solution in the
previous iteration. This is important in the context of practical
implementations, because in practice, we can always stop the
algorithm within a few iterations before it terminates.

C. Self-Interference Problem

Let us now consider the nonbipartite NWs. According to
Section II-A, for such NWs, we have A �= ∅. In other words,
the set of nodes cannot be divided into two distinct subsets
T and R, i.e., T ∩ R �= ∅ (e.g., multihop wireless NWs).
For example, see Figs. 1 and 2. For such NW topologies,
there is a self-interference problem, and consequently, the RA
problem must also cope with the self-interference problem.
The difficulty comes from the fact that the self-interference
gains {gijc}(i,j)∈A are typically few orders of magnitude larger
than the power gains between distinct NW nodes {gjjc}j∈L.
Therefore, there is a huge imbalance between some entries of
{gijc}i,j∈L. Roughly speaking, this condition can destroy the
smoothness of the functions that are associated with the RA
problem, e.g., the objective function of (6), and can ruin the
reliability and the efficiency of Algorithm 2, which at least
suboptimally solves it. In other words, there can be several
highly suboptimal Kuhn–Tucker solutions for (12), at which
Algorithm 2 can terminate by returning a very bad suboptimal

Fig. 2. Two-node NW (the channel c and time t indices are omitted for
clarity), where A = {(1, 2), (2, 1)}, g12 = 1, g21 = 1, g11 = |h11|2, and
g22 = |h22|2.

solution. Moreover, the SINR values at the incoming links of a
node that simultaneously transmits in the same channel are very
small, and the convergence of Algorithm 2 can be very slow
if it starts with an initial SINR guess γ̂ that contains entries
with nearly zero values. Therefore, the direct application of
Algorithm 2 almost always performs very poorly, and further
improvements are necessary.

One standard way of dealing with the self-interference prob-
lem consists of adding a supplementary combinatorial con-
straint in the RA subproblem that does not allow any node in the
NW to simultaneously transmit and receive in the same channel
[41]–[43]. We will refer to a power allocation that satisfies this
constraint as admissible. Note that this approach will require
solving a power optimization problem (by using Algorithm 2)
for each possible subset of links that can simultaneously be ac-
tivated. This approach results in a combinatorial nature for the
RA subproblem in the case of nonbipartite NWs [47]–[53]. Of
course, because the complexity of this approach exponentially
grows with the number of links and the number of channels,
this solution method quickly becomes impractical.

D. Successive Approximation Algorithm for RA in
Nonbipartite NWs (A �= ∅): A Homotopy Method

To avoid the difficulties pointed out in Section III-C, we
propose an algorithm that is inspired by homotopy methods
[21] that can be traced back to the late 1980s; see [54] and
the references therein. In fact, the well-known interior-point
methods [55] [45, Sec. 11] for convex optimization problems
also fall into this general class of homotopy methods.

The underlying idea is to first introduce a parameterized
problem that approximates the original problem (11). In partic-
ular, we construct the parameterized problem from the original
problem (11) by setting gijc = g for all (i, j) ∈ A, where
g > 0 is referred to as the homotopy parameter. Note that the
quality of the approximation improves as g grows. Of course,
when g is small (e.g., g and gjjc are roughly in the same
order), Algorithm 2 can reliably be used to find a suboptimal
solution for the parameterized problem. On the other hand,
when g is large (e.g., g = 1), the parameterized problem is
exactly the same as the original problem (11), and therefore,
Algorithm 2 cannot reliably perform, i.e., it becomes very slow,
and its result become strongly dependent on the initialization.
Thus, to circumvent this difficulty, a sequence of parameterized
problems are solved, starting from a very small g and increasing
the parameter g (thus, the accuracy of the approximation) at
each step until g = 1. Moreover, in each step, when solving
the parameterized problem for the current value of g, the initial
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guess for Algorithm 2 is obtained by using the solution (power)
of the parameterized problem for the previous value of g.

The proposed algorithm, which based on homotopy methods,
can be summarized as follows.

Algorithm 3: Successive approximation algorithm for RA in
the presence of self interferers

1) Initialization. Given an initial homotopy parameter g0 <
1, ρ > 1, a feasible power allocation P0. Let g = g0,
P = P0.

2) Set gijc = g for all (i, j) ∈ A. Find the SINR guess γ̂ by
using (9).

3) Solving the parameterized problem. Let γ̂(1) = γ̂ and
perform steps 2–4 of Algorithm 2 until convergence to
obtain the power and SINR values {p�

lc, γ
�
lc}l∈L,c∈C . Let

{plc = p�
lc}l∈L,c∈C .

4) If ∃(i, j) ∈ A and c ∈ C such that picpjc > 0 (i.e., P is
not admissible), then set g = min{ρg, 1} and go to step 5.
Otherwise, i.e., P is admissible, stop.

5) If g < 1, go to step 2; otherwise, stop.

The first step initializes the algorithm, and the homotopy
parameter g is initialized by g0, where g0 is chosen in the same
range of values as the power gains between distinct nodes. In
particular, in our simulations, we select g0 = maxj∈L{gjjc}.
Step 2 updates the problem data for the parameterized problem
and a feasible SINR guess is computed. The third step finds a
suboptimal solution for the parameterized problem. The algo-
rithm terminates in step 4 if P is admissible (thus, none of the
nodes in the NW simultaneously transmits and receives in the
same channel). On the other hand, if P is not admissible, then
the homotopy parameter g is increased. If g reaches its extreme
allowed value (i.e., the actual self-interference gain value of 1),
the algorithm terminates. Otherwise, i.e., g < 1, it returns to
step 2 and continues. Terminating Algorithm 3 if the solution
is admissible is intuitively obvious for the following reason.
The data that are associated with the parameterized problem
that is solved in step 3 of Algorithm 3 become independent of
the homotopy parameter g, and therefore, further increase in g
after having an admissible solution has no effect on the results.
Our computational experience suggests that Algorithm 3 yields
an admissible solution way before g reaches a value of 1 (e.g.,
by selecting ρ = 2 in all our simulations, an admissible power
allocation is achieved in about one to four iterations).

Because Algorithm 3 runs a finite number of instances of
Algorithm 2, its computational complexity does not increase
more than polynomially with the problem size. Clearly, Al-
gorithm 3 can converge to a Kuhn–Tucker solution of the
last parameterized problem (one just before the termination of
Algorithm 3).

As a specific example of illustrating the self interference, i.e.,
A �= ∅, consider the simple NW shown in Fig. 2. Here, N = 2,
L = 2, and C = 1. Note that A = {(1, 2), (2, 1)}, and let β1,
β2 �= 0. Suppose that g12 � g22 and g21 � g11, which is often
the case due to path losses. Because the gains g12 = 1 and
g21 = 1 are very large compared with g22 and g11, for any

nonzero power allocation p1, p2 = p0, the initial SINR guess
γ̂1, γ̂2 will have nearly zero values. This case results in dif-
ficulties of directly using Algorithm 2. In Algorithm 3, this
problem is circumvented by initializing the gains g12 and g21

by a parameter g0 (e.g., g0 = max{g11, g22}) and repeatedly
executing Algorithm 2, incrementally increasing the parameter
g until it reaches 1, which is the true value of g12 and g21.

With regard to the complexity of the proposed algorithm, we
make the following remarks. The computational complexity of
a GP depends on the number of variables and constraints, as
well as on the sparsity pattern of the problem [36]. Unfortu-
nately, it is difficult to precisely quantify the sparsity pattern,
and therefore, a general complexity analysis is not available. To
give a rough idea, let us consider a fully connected NW with
N = 9 nodes and C = 8 channels. The number of variables in
(18) is 2LC = 1152, the number of constraints is 3LC + N =
1737, and it was solved in about 12 s on a desktop computer.
The number of iterations depends on the starting point pmax

n and
channel gains gijc, but typically, Algorithm 2 required around
100 iterations to converge.

Nevertheless, with some slight modifications, it is possible
to dramatically decrease the average complexity per iteration,
which is very important in the context of practical implementa-
tions. Two simple modifications are as given follows.

1) Use large values for the parameter α in Algorithm 2. As
discussed in Section III-B, a large α can improve the
convergence speed of Algorithm 2, at the cost of reduced
accuracy of the monomial approximation.

2) Eliminate (relatively) insignificant variables. We can
eliminate the power variables plc and the associated SINR
variables γlc from (18) when they have relatively very
small contributions to the overall objective value of (18).
In particular, the exponent term βl(γ̂

(i)
lc /1 + γ̂

(i)
lc ) in the

objective of (18) is evaluated for all l ∈ L, c ∈ C. If
βl(γ̂

(i)
lc /1 + γ̂

(i)
lc ) � maxl̄∈L,c̄∈C(βl̄(γ̂

(i)

l̄c̄
/1 + γ̂

(i)

l̄c̄
)) then

plc s and the associated γlc s are eliminated in succes-
sive GPs.

IV. EXTENSION TO THE MULTIUSER DETECTOR CASE

The receiver structure has basically been assumed to be
equivalent to a bank of match filters, each of which attempts
to decode one of the signals of interest at each node while
treating the other signals as noise. This is a suboptimal de-
tector structure that is commonly assumed. In this section, we
investigate the possible gains that are achievable by using more
advanced receiver structures. For clarity, we first discuss the
single-channel case. The extension to the multichannel case
is presented in Appendix B. We assume that, at every node
n ∈ N , the transmitter performs superposition coding over its
outgoing links O(n) and the receiver decodes the signals of
incoming links I(n) by using a MU receiver based on the
successive interference cancelation (SIC) strategy. We may, of
course, assume other detector structures, including the optimum
approach that implements maximum likelihood. The largest set
of achievable rates is obtained when the SIC receiver at every
node n ∈ N is allowed to decode and cancel out the signals
of all its incoming links I(n) and any subset of the remaining
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links in its complement set L \ I(n). Let D(n) denote the set
of links that are decoded at the node n, i.e., D(n) = I(n) ∪
U(n) for some U(n) ⊆ L \ I(n). Furthermore, let RSIC(D(1),
. . . ,D(N), pmax

1 , . . . , pmax
N ) denote the achievable rate region

for given D(1), . . . ,D(N) and maximum node transmission
power pmax

1 , . . . , pmax
N . We denote by RSIC(pmax

1 , . . . , pmax
N )

the achievable rate region that is obtained as a union of
all RSIC(D(1), . . . ,D(N), pmax

1 , . . . , pmax
N ) over all possible

2
∑

n∈N (L−|I(n)|) combinations of sets D(1), . . . ,D(N), i.e.,

RSIC (pmax
1 , . . . , pmax

N )

=
⋃

D(1),...,D(N)|∀n∈N ∃U(n)⊆L\I(n) s.t. D(n)=I(n)∪U(n)

RSIC (D(1), . . . ,D(N), pmax
1 , . . . , pmax

N ) . (24)

The receiver of each node n ∈ N is allowed to perform
SIC in its own order. Let πn = (πn(1), . . . , πn(|D(n)|)) be an
arbitrary permutation of the links in D(n), which describes the
decoding and cancelation order at node n. In particular, the
signal of link πn(l) is decoded after all codewords of links
πn(j), j < l, have been decoded and their contribution to the
signal received at node n has been canceled. Thus, only the
signals of the links πn(j), j > l, act as interference. The rate
region RSIC(D(1), . . . ,D(N), pmax

1 , . . . , pmax
N ) is obtained by

considering all possible combinations of decoding orders for

all nodes, i.e., all possible
∏

n∈N (|D(n)|!) combinations π
Δ=

π1 × π2 × · · · × πN . Thus, RSIC (D(1), . . . ,D(N), pmax
1 , . . . ,

pmax
N ) can be expressed as in (25), shown at the bottom of

the page. Here, Gln, l ∈ L, n ∈ N represents the power gain
from the transmitter of link l to the receiver at node n, and
pl represents the power that is allocated for the signal of
link l. Clearly, the computational complexity experiences a
formidable increase. Nevertheless, the RA subproblem at the
third step of the dynamic cross-layer control Algorithm 1 can
be written as10

maximize
∑
l∈L

βl(t)rl

subject to (r1, . . . , rL) ∈ RSIC (pmax
1 , . . . , pmax

N ) . (26)

The combinatorial description of RSIC(pmax
1 , . . . , pmax

N ) im-
plies that solving (26) requires optimization over all possible
combinations of decoding sets D(1), . . . ,D(N) and decoding

10Note that RSIC(pmax
1 , . . . , pmax

N ) represents the set of directly achiev-
able rates. By invoking a time-sharing argument, we can extend the achievable
rate region to the convex hull of RSIC(pmax

1 , . . . , pmax
N ). However, this

approach will not affect the optimal value of (26), because the objective
function is linear [3].

orders π. This approach is intractable, even for the offline
optimization of moderate-size NWs. Therefore, in the following
discussion, we propose two alternatives for finding the solution
of a more constrained version of (26) instead of solving (26).
The first alternative limits the access protocol so that only one
node can transmit in all its outgoing links in each time slot. The
second alternative adopts a similar view by assuming that only
one node can receive from all its incoming links in each time
slot. The main advantage of the aforementioned alternatives is
their simplicity. As a result, a cheaply computable lower bound
on the optimal value of (26) can be obtained. Moreover, these
simple access protocols can be useful in practical applications
with more advanced communication systems.

A. Single-Node Transmission Case

By imposing the additional constraint that only one node can
transmit during each slot, the RA subproblem (26) is reduced
to a problem where the optimal power and rate allocation
can be computed through convex programming. In particular,
the RA subproblem (26) is reduced to N weighted sum-rate
maximization problems for the scalar broadcast channel: one
for each possible transmitting node.

For any node n ∈ N , let ρn = (ρn(1), . . . , ρn(|O(n)|)) be a
permutation of the set of outgoing links O(n) such that

gρn(1)ρn(1)(t) ≤ gρn(2)ρn(2)(t) . . . ≤ gρn(|O(n)|)ρn(|O(n)|)(t),

where gij(t) denotes the power gain from the transmitter of link
i to the receiver of link j during time slot t. Now, we consider
the case where node n is the transmitter. This conditoin results
in a scalar Gaussian broadcast channel with |O(n)| users. The
optimal decoding and cancelation order at every receiver node
of links ρn(i), i ∈ {1, . . . , |O(n)|} is specified by ρn [56,
Sec. 6]. In particular, the receiver of the link ρn(i) decodes its
own signal after all codewords of links ρn(j), j < i have been
decoded and their contribution to the received signal has been
canceled. Thus, only the signals of the links ρn(j), j > i, act
as interference at the receiver of the link ρn(i). Now, we can
rewrite (26) by using the capacity region descriptions of the
scalar Gaussian broadcast channels [57] as

maximize
∑

l∈O(n)

βlrl

subject to n ∈ N

rρn(i)≤ log

(
1+

gρn(i)ρn(i) pρn(i)

σ2+gρn(i)ρn(i)

∑|O(n)|
j=i+1 pρn(j)

)

i ∈ {1, . . . , |O(n)|}

RSIC (D(1), . . . ,D(N), pmax
1 , . . . , pmax

N )

=
⋃
π

⎧⎪⎪⎨
⎪⎪⎩(r1, . . . , rL)

∣∣∣∣∣∣∣∣
rπn(l) ≤ log

(
1 +

Gπn(l)n(t)pπn(l)

σ2 +
∑

j>l Gπn(j)n(t)pπn(j)

)
, ∀(n, l) s.t. n ∈ N , l ∈ {1, . . . , |D(n)|}∑

l∈O(n) pl ≤ pmax
n , n ∈ N

pl ≥ 0, l ∈ L

⎫⎪⎪⎬
⎪⎪⎭ (25)
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∑
l∈O(n)

pl ≤ pmax
n

pl ≥ 0 l ∈ O(n)
pl = 0 l /∈ O(n), (27)

where the variables are n, pl, and rl. Note that the time index
t is dropped for notational convenience. The solution of (27) is
obtained in two steps. First, we solve N independent subprob-
lems (one subproblem for each possible transmitting node n ∈
N ). Then, we select the solution of the subproblem with the
largest objective value. The subproblem can be expressed as

maximize
|O(n)|∑
i=1

βρn(i)rρn(i)

subject to rρn(i) =log

(
1+

gρn(i)ρn(i) pρn(i)

σ2+gρn(i)ρn(i)

∑|O(n)|
j=i+1 pρn(j)

)

i ∈ {1, . . . , |O(n)|}∑
l∈O(n)

pl ≤ pmax
n

pl ≥ 0, l ∈ O(n), (28)

where the variables are rl and pl, l ∈ O(n). Problem (28) rep-
resents the weighted sum-rate maximization over the capacity
region of a scalar Gaussian broadcast channel [57, Sec. 2]
with |O(n)| users. The barrier method [45, Sec. 11.3.1] or
the explicit greedy method proposed in [57, Sec. 3.2] can be
used to efficiently solve this problem. Here, we use the barrier
method; see Appendix C for more details. Let g(n), p

(n)
l , and

r
(n)
l denote the optimal objective value and the corresponding

optimal solution, i.e., power and rate, respectively. Then, the
rate/power relation can be expressed as

r
(n)
ρn(i) = log

⎛
⎝1 +

gρn(i)ρn(i) p
(n)
ρn(i)

σ2 + gρn(i)ρn(i)

∑|O(n)|
j=i+1 p

(n)
ρn(j)

⎞
⎠

i ∈ {1, . . . , |O(n)|} (29)

and the optimal solution of (27) is given by

n� = arg max
n∈N

g(n)

p�
l =

{
p
(n�)
l l ∈ O(n�)

0 otherwise

r�
l =

{
r
(n�)
l l ∈ O(n�)

0 otherwise.
(30)

B. Single-Node Reception Case

Here, we consider the case where only one node can receive
during each slot. As a result, the associated RA subproblem
(26) is reduced to a simpler form, where the optimal power and
rate allocation can very efficiently be computed by considering
N weighted sum-rate maximization problems for the Gaussian
multiaccess channel: one for each possible receiving node.

We start by considering the capacity region descriptions of
the Gaussian multiaccess channel with |I(n)|, n ∈ N users
[58], [56, Sec. 6]. For any receiving node n ∈ N , the capacity
region of a the |I(n)|-user Gaussian multiaccess channel with
power constraints pl, l ∈ I(n) is given by the set of rate vectors
that lie in the intersection of the constraints, i.e.,

∑
l∈V(n)

rl ≤ log

(
1 +

∑
l∈V(n) gllpl

σ2

)
(31)

for every subset V(n) ⊆ I(n). Thus, we can rewrite (26) as

maximize
∑

l∈I(n)

βlrl

subject to n ∈ N
∑

l∈V(n)

rl ≤ log

(
1 +

∑
l∈V(n) gllpl

σ2

)
,

V(n) ⊆ I(n)

0 ≤ pl ≤ pmax
tran(l), l ∈ I(n)

pl = 0, l /∈ I(n), (32)

where the variables are n, pl, and rl. Again, the solution is
obtained in two steps. First, we solve N independent subprob-
lems (one subproblem for each possible receiving node n ∈ N ).
Then, we select the solution of the subproblem with the largest
objective value. The subproblem has the form

maximize
∑

l∈I(n)

βlrl

subject to
∑

l∈V(n)

rl ≤ log

(
1 +

∑
l∈V(n) gllpl

σ2

)
,

V(n) ⊆ I(n)

0 ≤ pl ≤ pmax
tran(l), l ∈ I(n), (33)

where the variables are rl and pl, l ∈ I(n). Problem (33)
is equivalent to the weighted sum-rate maximization over
the capacity region of the Gaussian multiaccess channel with
|I(n)| users [56, Sec. 6]. The solution is readily obtained by
considering the polymatroid structure of the capacity region
[58, Lemma 3.2]. Again, we denote by g(n), p

(n)
l , and r

(n)
l

the optimal objective value and the optimal solution of (33),
respectively. Thus, the solution of (33) can be written in closed
form as p

(n)
l = pmax

tran(l) for all l ∈ I(n), and

r
(n)
πn(i) = log

⎛
⎝1 +

gπn(i)πn(i) p
(n)
πn(i)

σ2 +
∑|I(n)|

j=i+1 gπn(j)πn(j) p
(n)
πn(j)

⎞
⎠ ,

i ∈ {1, . . . , |I(n)|} , (34)

where πn = (πn(1), . . . , πn(|I(n)|)) is a permutation of the set
of incoming links I(n) such that

βπn(1) ≤ βπn(2) · · · ≤ βπn(|I(n)|). (35)
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We can, in fact, identify πn as the SIC order at the receiving
node n ∈ N . Finally, the optimal solution of (32) can be
expressed as

n� = arg max
n∈N

g(n)

p�
l =

{
p
(n�)
l l ∈ I(n�)

0 otherwise

r�
l =

{
r
(n�)
l l ∈ I(n�)

0 otherwise.
(36)

V. NUMERICAL RESULTS

In this section, we use the algorithms of the preceding
sections to identify the solutions to the selected NUM problem
and their properties to have insights into the NW design and
provisioning methods. In particular, in every time slot t, the rate
allocation at step 3 of the dynamic cross-layer control algorithm
(i.e., Algorithm 1; see Section II) is obtained using the proposed
RA algorithms described in Sections III and IV.

We assume a block-fading Rayleigh channel model, where
the channel coefficients are constant during each time slot and
independently change from one slot to another. The small-scale
fading components of the channel gains are assumed to be in-
dependent and identically distributed over the time slots, links,
and channels. Recall that we consider equal power spectral
density for all receivers, i.e., Nl = N0 for all l ∈ L and equal
channel bandwidths, i.e., Wc = W for all c ∈ L. Furthermore,
the maximum power constraint is assumed the same for all
nodes, i.e., pmax

n = pmax
0 for all n ∈ N (independent of the

number of channels C). For fair comparison between cases
with different numbers of channels, we have assumed that
the total available bandwidth is constant, regardless of C, i.e.,∑C

c=1 Wc = Wtot. In all our simulations, we have selected the
total bandwidth to be normalized to 1, i.e., Wtot = 1 Hz.

To compare different algorithms, we consider the fol-
lowing two performance metrics: 1) the average sum
rate

∑
n∈N

∑
s∈Sn

x̄s
n and 2) the average NW congestion∑

n∈N
∑S

s=1 q̄s
n. For each NW instance, the dynamic cross-

layer control algorithm (i.e., Algorithm 1) is simulated for
at least T = 10 000 time slots, and the average rates x̄s

n

and queue sizes q̄s
n are computed by averaging the last t0 =

3000 time slots, i.e., x̄s
n = 1/t0

∑T
t=T−t0

xs
n(t) and q̄s

n =
1/t0

∑T
t=T−t0

qs
n(t). We assume that the average rates x̄s

n that
correspond to all node-commodity pairs (n, s)s∈Sn

, n ∈ N , are
subject to proportional fairness, and therefore, we select the
utility functions us

n(x) = ln(x). In all the considered setups,
we selected V = 100 [in (4)], and the parameters Rmax

n [in (4)]
were chosen such that all the conditions in [4, Sec. III-D] were
satisfied.

We start with a simple NW instance (see Section V-A), i.e.,
a bipartite NW, where there exist no self interferers (i.e., A =
∅), and the proposed successive approximation algorithm (i.e.,
Algorithm 2; see Section III-B) is used in RA. The associate
results show important consequences on upper layers due to the
proposed successive approximation algorithm. We then con-

Fig. 3. Bipartite wireless NW with N = 8 nodes, L = 4 links, and S = 4
commodities.

sider more general NWs (see Section V-B) with the presence
of self interferers (i.e., A �= ∅), where Algorithm 3 (see Sec-
tion III-D) is used in RA. Finally, we look at the MU receiver
scenario, again using the same NW instance as in Section V-B.
The associate results (see Section V-C) show impacts in the
upper layer performance due to advanced receiver architecture.

A. Bipartite NWs: Receivers Perform Single-User Detection

A bipartite NW, as shown in Fig. 3, is considered. There
are N = 8 nodes, L = 4 links, and S = 4 commodities. One
distinct commodity exogenously arrives at every node n from
the subset {1, 2, 3, 4} ⊆ N . Without loss of generality, we
assume that the nodes and commodities are labeled such that
commodity i arrives at node i for any i ∈ {1, 2, 3, 4}. The
destination nodes are specified by the following commodity-
destination node pairs (s, ds) ∈ {(1, 5), (2, 6), (3, 7), (4, 8)}.

The channel power gains between distinct nodes are given by

|hijc(t)|2 = μ|i−j|cijc(t), i, j ∈ L, c ∈ C, (37)

where cijc(t) are exponentially distributed independent random
variables with unit mean used to model the Rayleigh small-
scale fading, and the scalar μ ∈ [0, 1] is referred to as the inter-
ference coupling index, which parameterizes the interference
between direct links. For example, if μ = 0, transmissions of
links are inference free. The interference between transmissions
increases as the parameter μ grows. Similar channel gain mod-
els for bipartite NWs have also been used in [59]. Of course,
this simple hypothetical model provides useful insights into
the performance of the proposed algorithms in bipartite NWs
(e.g., cellular NWs). We define the signal-to-noise ratio (SNR)
operating point as

SNR =
pmax
0

N0Wtot
. (38)

Fig. 4 shows the dependence of the average sum rate,
i.e.,

∑4
s=1 x̄s

s in Fig. 4(a), and the average NW congestion,
i.e.,

∑4
s=1 q̄s

s in Fig. 4(b), on the interference coupling index
μ for our proposed Algorithm 2 and for the optimal base-
line single-link activation (BLSLA) policy.11 We consider the

11A channel access policy where, during each time slot, only one link is
activated in each channel, is called the BLSLA policy. Finding the optimal
BLSLA policy that solves the RA subproblem (6) is a combinatorial problem
with exponential complexity in C. Thus, it quickly becomes intractable, even
for moderate values of C. However, for the case C = 1, the optimal BLSLA
policy can easily be found, and it consists of activating, during each time slot,
only the link that achieves the maximum weighted rate.
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Fig. 4. Dependence of the average sum rate (top) and the average NW
congestion (bottom) on the interference coupling index μ, where C = 1, and
SNR = 2, 8, and 16 dB. (a) Average sum rate

∑4

s=1
x̄s

s. (b) Average NW

congestion
∑4

s=1
q̄s
s .

single-channel case C = 1, which operates at three different
SNR values 2, 8, and 16 dB. The initial power allocation P0

for Algorithm 2 is chosen such that [P0]l,1 = pmax
0 , unless

otherwise specified. Here, we can make several observations.
First, the proposed Algorithm 2 provides substantial gains both
in the average sum rate and in the average NW congestion, par-
ticularly for small and medium values of the interference cou-
pling index. The gains diminish as interference between direct
links becomes significant. This behavior is intuitively expected,
because for large SNR values, the BLSLA policy becomes
optimal when the interference coupling index μ approaches 1.
Note that, at small SNR values, the NW can still benefit from
scheduling multiple links per slot, even for the case μ = 1.
This gain comes from the fact that the channels gains between
interfering links are also affected by fading. Thus, links that
experience low instantaneous interference levels can simulta-
neously be scheduled. Results suggest that, particularly for
small and medium values of the interference coupling index, the
proposed solution method yields designs that are far superior
than the designs obtained by BLSLA.

Fig. 5(a) and (b) shows the dependence of the average sum
rate and the average NW congestion on the number of iterations
for Algorithm 2, respectively. We consider the single-channel

Fig. 5. Dependence of the average sum rate (top) and the average NW
congestion (bottom) on the iteration, where μ = 0.5, C = 1, and SNR =

2, 8, and 16 dB. (a) Average sum rate
∑4

s=1
x̄s

s. (b) Average NW congestion∑4

s=1
q̄s
s .

case C = 1 with interference coupling index μ = 0.5 and SNR
values 2, 8, and 16 dB. To facilitate faster convergence, Algo-
rithm 2 is run without considering the trust region constraints.12

As a reference, we consider the optimal BLSLA policy. Results
show that the incremental benefits are very significant for the
first few iterations and are marginal for the latter iterations. For
example, in the case of SNR = 16 dB, when the numbers of
iterations changes from 1 to 3, the improvement in the average
sum rate is around 18.1%, whereas when it changes from 7 to 9,
the improvement is around 0.30%. Therefore, by running Al-
gorithm 2 for few iterations (e.g., five iterations), we can
yield performance levels that are almost indistinguishable from
performance levels that would have been obtained by running
Algorithm 2 until it terminates (see the stopping criterion in
step 3). This observation can be very useful in practice, be-
cause we can terminate Algorithm 2 when the incremental
improvements between consecutive iterations become substan-
tially small.

Fig. 6(a) and (b) shows the dependence of the average sum-
rate and the average NW congestion, respectively, on the SNR

12To do this approach, we can simply set the parameter α in Algorithm 2 to
a very large positive number, e.g., α = 10100 [see (18)].
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Fig. 6. Dependence of the average sum rate (top) and the average NW
congestion (bottom) on the SNR, where C = 1, and μ = 0.3. (a) Average sum
rate
∑4

s=1
x̄s

s. (b) Average NW congestion
∑4

s=1
q̄s
s .

for Algorithm 2 and the optimal BLSLA policy. We have
considered the case where C = 1 and μ = 0.3. For comparison,
we also plot the results due to a commonly used HSINR
approximation [33], where the achievable rates log(1 + γlc) are
approximated by log(γlc).13 We should not confuse a HSINR
with a high SNR, because they are fundamentally different, and
a high SNR value does not ensure HSINR values in all links.
Results show that, compared with other methods, RA based
on Algorithm 2 offers larger average sum rate and reduced
average NW congestion. The relative gains of Algorithm 2 are
reduced compared with BLSLA at high SNR. For example, the
relative gain offered by the proposed Algorithm 2 in the average
sum rate changes from 40% to 17% [see Fig. 6(a)], and the
relative gain in the average NW congestion changes from 23%
to 15% [see Fig. 6(b)] when the SNR value is increased from
16 to 24 dB, respectively. This observation is consistent with
the fact that, at a high SNR, the optimal RA very likely has a
BLSLA structure. As a result, at the optimal RA, different links
correspond to different SINR regions, and therefore, the HSINR

13Here, the objective function of (11) is approximated by∏
c∈C
∏

l∈L γ
−βl
lc

. Recall that γlc represents the SINR of link l in
channel c, and βl represents the differential backlog of link l. This results in a
convex approximation (i.e., a GP) of (11).

approximation is, of course, unreasonable and suffers a large
penalty, particularly at high SNR values. This poor performance
is qualitatively consistent with intuition: the solution that is
obtained by employing the HSINR approximation in RA must
contain all nonzero entries (i.e., nonzero γlc) to drive the
approximated objective (i.e.,

∏
c∈C
∏

l∈L γ−βl

lc ) into a nonzero
value, and therefore never yields a solution of the form BLSLA.

Fig. 7(a) and (b) shows the dependence of the average sum
rate and the average NW congestion on the numbers of channels
C for Algorithm 2, respectively. We consider the case where
SNR = 16 dB and μ = 0.3, and the initial power allocation P0

for Algorithm 2 is simply chosen such that [P0]l,c = pmax
0 /C.

The plots illustrate that increasing the number of channels will
yield better performance in both the average sum rate and the
average NW congestion (e.g., when the number of channels
C changes from 1 to 8, the improvement in the average sum
rate and the reduction in the average NW congestion is around
12% and 12.4%, respectively). Note that the benefits are solely
achieved by opportunistically exploiting the available multi-
channel diversity in the NW through the proposed Algorithm 2,
without any supplementary bandwidth or power consumption.
Moreover, the incremental benefits are very significant for small
C. For example, when the number of channels C changes from
1 to 2, the improvement in the average sum rate is around
6%, whereas when C changes from 7 to 8, the improvement
is around 0.25%. The plots gives much insight into why multi-
channel designs are important and beneficial compared with its
single-channel counterpart.

B. Multihop NWs: Receivers Perform Single-User Detection

Two fully connected multihop wireless NW setups, as shown
in Fig. 8, are considered. Each of the NW consist of four
nodes (i.e., N = 4) and two commodities (i.e., S = 2), which
exogenously arrive at the source nodes. In the case of the
first NW setup shown in Fig. 8(a), commodity 1 exogenously
arrives at node 1 and is intended for node 4, and commodity 2
exogenously arrives at node 4 and is intended for node 1. Nodes
are located in a square grid such that the horizontal and the
vertical distances between adjacent nodes are D0 m. In the
case of the second NW setup shown in Fig. 8(b), commodity 1
exogenously arrives at node 1 and is intended for node 2, and
commodity 2 exogenously arrives at node 2 and is intended
for node 3. Nodes are located such that three of them form an
equilateral triangle and the fourth node is located at the center
[see Fig. 8(b)]. It is assumed that the distance from the middle
node to any other node is D0 m.

We assume an exponential path loss model where the channel
power gains |hijc(t)|2 between distinct nodes are given by

|hijc(t)|2 =
(

dij

d0

)−η

cijc(t), (39)

where dij is the distance from the transmitter of link i to the
receiver of link j, d0 is the far-field reference distance [60], η is
the path loss exponent, and cijc(t) are exponentially distributed
random variables with unit mean, independent over the time
slots, links, and channels. The first term in (39) represents
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Fig. 7. Dependence of the average sum rate (left) and the average NW congestion (right) on the number of channels C, where SNR = 16 dB, and μ = 0.3.
(a) Average sum rate

∑4

s=1
x̄s

s. (b) Average NW congestion
∑4

s=1
q̄s
s .

Fig. 8. (a) Multihop NW 1, N = 4, fully connected, and S = 2. (b) Multihop
NW 2, N = 4, fully connected, and S = 2.

the path loss factor, and the second term models the Rayleigh
small-scale fading. The SNR operating point is defined as

SNR =
pmax
0

N0Wtot
·
(

D0

d0

)−η

. (40)

In the following simulations, we set D0/d0 = 10 and η = 4.
Fig. 9 shows the dependence of the average NW layer sum

rate on the SNR for the considered NW setups, where we
use C = 1. As a benchmark, we first consider the branch-and-
bound algorithm proposed in [27] to optimally solve the RA
subproblem. Note that the optimality of the algorithm proposed
in [27] is achieved at the expense of prohibitive computational
complexity, even in the case of very small problem instances.
We then consider the optimal BLSLA policy and Algorithm 3
with the following two initialization methods: 1) uniform
initialization and 2) BLSLA-based initialization. In the case
of uniform initialization, the initial power allocation P0 is
chosen such that [P0]l,1 = pmax

0 /(|Otran(l)|). In the case of
BLSLA based initialization the initial power allocation P0

is chosen such that [P0]l�,1 : [P0]j,1 = M : 1 for all j ∈ L,
j �= l�, where l� is the index of the active link obtained based
on the optimal BLSLA policy, and M � 1 is a real number.
For comparison, we also plot the results for Algorithm 2 with
uniform and BLSLA initializations.

Results show that the performance of Algorithm 3 is very
close to the optimal branch-and-bound algorithm. In particular,
Algorithm 3 with BLSLA initialization is almost indistinguish-

Fig. 9. (a) Dependence of the average NW-layer sum rate x̄1
1 + x̄2

4 on the
SNR for NW 1. (b) Dependence of the average NW-layer sum rate x̄1

1 + x̄2
2 on

the SNR for NW 2.

able from the optimal and is at least as good as the optimal
BLSLA for all considered cases. In contrast, Algorithm 3 with
uniform initialization exhibits significant deviations from both
the optimal branch-and-bound algorithm and BLSLA, partic-
ularly at high-SNR values. This behavior is not surprising,
because Algorithm 3 is a local method for the nonconvex RA
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Fig. 10. Multihop wireless NW with N = 9 nodes and S = 3 commodities.

TABLE I
NW COMMODITIES, DESTINATION NODES, AND SOURCE NODES

subproblem (6). Therefore, the initialization point of the algo-
rithm can influence the resulting solution [45, Sec. 1.4.1]. Nev-
ertheless, a carefully selected initialization point can improve
the performance of Algorithm 3 very close to the optimal. For
example, at high-SNR values, the performance of Algorithm 3
with BLSLA initialization is almost identical to the optimal,
whereas the performance with uniform initialization deviates a
bit from the optimal. Note that, at low and moderate values of
SNR, results due to Algorithm 3 are not significantly affected
by the initialization method. Results also convince that, in the
presence of self interferers, Algorithm 2 cannot perform well,
and it can converge to a very bad suboptimal point, as pointed
out in Section III-D. Therefore, although the computational
complexity of Algorithm 3 does not increase more than poly-
nomially with the problem size, results show that Algorithm 3
with a proper initialization performs close to the optimal.

Next, a larger NW, i.e., a fully connected multihop multicom-
modity wireless NW, as shown in Fig. 10, is considered. There
are N = 9 nodes and S = 3 commodities. The commodities
exogenously arrive at different nodes in the NW, as described
in Table I. Thus, we have S1 = {2}, S2 = {3}, S3 = {3},
S5 = {2}, S7 = {1, 3}, and Si = ∅ for all i ∈ {4, 6, 8, 9}. The
nodes are located in a rectangular grid such that the horizontal
and vertical distances between adjacent nodes are D0 m. The
channel power gains between nodes are given by (39), and
the SNR operating point is given by (40). Moreover, we set
D0/d0 = 10 and η = 4.

Fig. 11(a) and (b) shows, respectively, the dependence of the
average sum-rate and the average NW congestion on the SNR
for several algorithms, where we use C = 1. First, we have
considered the optimal BLSLA policy and Algorithm 3 with the
following two initialization methods: 1) uniform initialization
and 2) BLSLA-based initialization (the same initializations that
were used when plotting Fig. 9). For comparison, we also plot
the results for the low complex approaches, where the set of
nodes N is first partitioned into two disjoint subsets (the set
of transmitting nodes T and the set of receiving nodes R),

Fig. 11. Dependence of the average sum rate (top) and the average NW
congestion (bottom) on the SNR, where C = 1. (a) Average sum rate∑9

n=1

∑
s∈Sn

x̄s
n. (b) Average NW congestion

∑9

n=1

∑3

s=1
q̄s
n.

and then, Algorithm 2 and HSINR approximation are used in
RA. The partitioning of the set of nodes N into two disjoint
subsets is performed using the following two simple methods:
1) random partitioning and 2) greedy partitioning based on
differential backlogs. In random partitioning, each node is
allocated either to T or to R with equal probabilities. Greedy
partitioning is performed as follows. We start with an empty set
of links L̄ = ∅. At each step, the link l� from the set L \ L̄ with
the largest differential backlog βl (i.e., l� = arg maxl∈L\L̄ βl)
is added to the set L̄. Then, all links that are outgoing from
rec(l�) and all links that are incoming to tran(l�) are deleted
from L. This procedure continues until there are no links left in
L \ L̄. The sets T and R can be found as T = {tran(l)|l ∈ L̄}
and R = {rec(l)|l ∈ L̄}.

Based on Fig. 11, we make the following observations. First,
Algorithm 3 with BLSLA-based initialization yields better
results than any other counterpart. In contrast, Algorithm 3
with uniform initialization shows significant deviations from
the BLSLA solution at high SNR, particularly in the terms of
average sum rate [see Fig. 11(a)]. Moreover, it is important
to again observe that, at low and moderate values of SNR,
results due to Algorithm 3 are not substantially affected by
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Fig. 12. Dependence of the average sum rate (top) and the average NW
congestion (bottom) on the number of channels C, where SNR = 16 dB.
(a) Average sum rate

∑9

n=1

∑
s∈Sn

x̄s
n. (b) Average NW congestion∑9

n=1

∑3

s=1
q̄s
n.

the initialization method. These observations are almost the
same as the observations shown in Fig. 9. We also observe
that Algorithm 3 with a proper initialization can significantly
outperform Algorithm 2 in conjunction with either random or
greedy partitioning. This elaborates the importance of gradual
self-interference gain increments (i.e., step 4 of Algorithm 3)
in finding a better RA compared to the direct application
of Algorithm 2 with a heuristic partitioning. In most cases,
there is no advantage of using HSINR approximation. These
observations are very useful in practice, because they illustrate
that Algorithm 3 often works well when initialized with a
reasonable starting point (e.g., BLSLA-based initialization). In
addition, we note that, even with a very simple initialization,
e.g., uniform initialization, Algorithm 3 yields substantial gains,
particularly at small- and moderate-SNR values (e.g., 0–20 dB).

Fig. 12(a) and (b) shows the dependence of the average
sum rate

∑9
n=1

∑
s∈Sn

x̄s
n and the average NW congestion∑9

n=1

∑3
s=1 q̄s

n on the numbers of channels C for Algorithm
3, respectively. We have considered the case where SNR =
16 dB and a uniform initialization for Algorithm 3, where
the initial power allocation P0 is chosen such that [P0]l,c =
pmax
0 /(C.|Otran(l)|). For comparison, we also plot the results

Fig. 13. Dependence of the average sum rate (top) and the average NW
congestion (bottom) on the SNR, where C = 1. (a) Average sum rate∑9

n=1

∑
s∈Sn

x̄s
n. (b) Average NW congestion

∑9

n=1

∑3

s=1
q̄s
n.

for Algorithm 2 with random and greedy partitioning of nodes
N . The results are consistent with our previous observations
in Fig. 7, i.e., as the number of channels increases, better
performance in both the average sum rate and the average NW
congestion is achieved. These benefits are again obtained by
opportunistically exploiting the available multichannel diver-
sity in the NW through the proposed algorithms. Moreover, the
results suggest that using Algorithm 3 in the RA can very sig-
nificantly increase the gains compared to RA based on simple
extensions to Algorithm 2, which runs with either random or
greedy partitioning of nodes. For example, the relative gains in
the average sum rate are more than 23% [see Fig. 12(a)], and the
relative gains in the average NW congestion are more than 4.7%
[see Fig. 12(b)] over the range of interest: C = 1 to C = 8.

C. Multihop NWs: Single-Node Transmission Case and
Receivers Perform MU Detection

The NW instance, assumptions, and simulation parameters
are exactly the same as in Section V-B.

Fig. 13(a) and (b) shows, respectively, the dependence of
the average sum rate

∑9
n=1

∑
s∈Sn

x̄s
n and the average NW

congestion
∑9

n=1

∑3
s=1 q̄s

n on the SNR for RA, where only one
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node is allowed to transmit in each slot, and receivers perform
MU detection. For illustration, we consider the single-channel
case (i.e., C = 1). We also show the results for the nonfading
case [i.e., by having cijc(t) = 1 in (39)] for comparison. Here,
we can make several observations. Fading can significantly
improve the overall performance in the average sum rate and
the average NW congestion. This observation has an analogy
with MU diversity in downlink fading channels [56, Sec. 6.6].
Intuition suggests that, when several links independently fade,
at any time slot, there is a high probability that the resulting rate
and power allocation yields a better schedule (see [8, Sec. 4.7])
compared with the nonfading case. There are significant ad-
vantages of having MU detection, particularly for high-SNR
values. At low SNR, gains are marginal. Thus, MU detectors
have a practical significance over SU detectors, particularly in
the high-SINR regime. For example, in a fading environment, at
SNR = 24 dB, we obtain around 7.5% increase in the average
sum rate and 5% decrease in the average NW congestion.
In a nonfading environment, MU detectors offer around 16%
increase in the average sum rate and 13.5% decrease in the
average NW congestion.

VI. CONCLUSION

We have considered the power and rate control problem
in a wireless NW in conjunction with the next-hop routing/
scheduling and flow control problem. Thus, although we have
focused on the so-called RA problem, which is confined to
the PHY/MAC layers, its formulation captures the interactions
with the higher layers similar to the approach employed by
Neely et al. for fairness and optimal stochastic control for
heterogeneous NWs. The result is a cross-layer formulation.
The problem, unfortunately, is NP-hard, and therefore, there are
no polynomial-time algorithms for solve it. Our contribution
has been to first consider a general access operation but with
a relatively simple form of receivers structure (bank of match
filters) and then to limit the access operation to a single node at
a time (either transmitting or receiving) but allow for increased
MU detector complexity at the receiver. In the first case, we
offer a new optimization methodology based on homotopy
methods and CGP solution methods. Numerical results showed
that the proposed algorithms perform close to exponentially
complex optimal solution methods. In addition, they are, of
course, fast and can handle large-scale problems. In the second
case, we obtain a complete solution and numerically illustrate
the performance gain due to MU detector capability. The main
benefit here is the simplicity of the proposed solution methods.
As a result, these simple access protocols can potentially be
useful in practical applications with more advanced communi-
cation systems.

APPENDIX A
DIRECT MONOMIAL APPROXIMATION

In this section, we derive a monomial approximation for the
objective function of (11), which results in the same successive
approximation steps as in Algorithm 2. We first prove the
following lemma.

Lemma 2: Let m(γ) = d
∏

c∈C
∏

l∈L γalc

lc be a monomial
function [36] that is used to approximate the objective function
(11), i.e., f(γ) =

∏
c∈C
∏

l∈L(1 + γlc)−βl , near an arbitrary
point {γ̂lc > 0}l∈L,c∈C . The parameters d and alc of the best
monomial local approximation are given by

alc = −βlγ̂lc(1 + γ̂lc)−1, d = f(γ̂)
∏
c∈C

∏
l∈L

γ̂−alc

lc , (41)

where γ̂lc = [γ̂]l,c.
Proof: The monomial function m is the best local approx-

imation of f near the point γ̂ if (see [36])

m(γ̂) = f(γ̂), ∇m(γ̂) = ∇f(γ̂). (42)

By replacing the expressions of m and f in (42), we obtain the
following system of equations:⎧⎪⎨
⎪⎩

d
∏

c∈C
∏

l∈L γ̂alc

lc = f(γ̂)

alcγ̂
−1
lc d

∏
c∈C
∏

l∈L γ̂alc

lc = − βlf(γ̂)
(1 + γ̂lc)

c ∈ C, l ∈ L

the solution of which is given by (41). �
By using the local approximation given by Lemma 2 in

the objective function of (11) and ignoring the multiplicative
constant d, which does not affect the problem solution, we ob-
tain identical successive approximation steps as in Algorithm 2.

APPENDIX B
EXTENSION TO THE MULTICHANNEL SIC

In this section, we present the multichannel extension of the
material presented in Section IV. The assumptions remain the
same as in Section IV, i.e., at every node n ∈ N the transmitter
independently performs superposition coding over its outgoing
links O(n) in each channel c ∈ C, and every receiving node
n ∈ N performs SIC to decode the signals of incoming links
l ∈ I(n) in each channel c ∈ C. In every channel c ∈ C, the
SIC receiver at every node n ∈ N has to decode and cancel
out the signals of all its incoming links I(n) and any subset of
the remaining links in its complement set L \ I(n) to obtain
the largest set of achievable rates. Let us denote the set of links
that are decoded at the node n associated with each channel
c ∈ C by Dc(n). Here, the set Dc(n) = I(n) ∪ Uc(n) for some
Uc(n) ⊆ L \ I(n). Furthermore, let RSIC

c (Dc(1), . . . ,Dc(N),
pmax
1c , . . . , pmax

Nc ) denote the achievable rate region associated
with channel c ∈ C for given Dc(1), . . . ,Dc(N) and the maxi-
mum node transmission power pmax

1c , . . . , pmax
Nc , where pmax

nc is
the maximum transmission power that is allocated to channel
c ∈ C at node n ∈ N . By taking the union of all possible com-
binations of sets Dc(1), . . . ,Dc(N), the achievable rate region
that is associated with channel c ∈ C for a given maximum node
transmission power pmax

1c , . . . , pmax
Nc can be expressed as

RSIC
c (pmax

1c , . . . , pmax
Nc )

=
⋃

D(1),...,D(N)|∀n∈N ∃U(n)⊆L\I(n) s.t. D(n)=I(n)∪U(n)

RSIC
c (D(1), . . . ,D(N), pmax

1c , . . . , pmax
Nc ) . (43)
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RSIC
c (Dc(1), . . . ,Dc(N), pmax

1c , . . . , pmax
Nc )

=
⋃
πc

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(r1, . . . , rL)

∣∣∣∣∣∣∣∣∣∣
rπnc(l) ≤ log

⎛
⎜⎝1 +

Gπnc(l)nc(t)pπnc(l)c

σ2 +
∑
j>l

Gπnc(j)nc(t)pπnc(j)c

⎞
⎟⎠ , ∀(n, l) s.t. n ∈ N , l ∈ {1, . . . , |Dc(n)|}

∑
l∈O(n) plc ≤ pmax

nc , n ∈ N
plc ≥ 0, l ∈ L

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(44)

Let πnc = (πnc(1), . . . , πnc(|Dc(n)|)) represent arbitrary
permutations of the links in Dc(n), which describes the de-
coding and cancelation order at node n in channel c. The rate
region RSIC

c (Dc(1), . . . ,Dc(N), pmax
1c , . . . , pmax

Nc ) is obtained
by considering all possible combinations of decoding orders for

all nodes, i.e., all possible
∏

n∈N (|Dc(n)|!) combinations πc
Δ=

π1c × π2c × · · · × πNc. Thus, the achievable rate region that is
associated with channel c ∈ C for given Dc(1), . . . ,Dc(N) and
the maximum node transmission power pmax

1c , . . . , pmax
Nc can be

expressed as in (44), shown at the top of the page,14 where
Glnc, l ∈ L, n ∈ N , c ∈ C, represents the power gain from the
transmitter of link l to the receiver at node n in channel c, and
plc represents the power that is allocated for link l′s signal in
channel c.

Therefore, by having superposition coding at the transmitters
and SIC at the receivers, the achievable rate region for the
interference channel can be expressed as

RSIC (pmax
1 , . . . , pmax

N )

=

⎧⎪⎨
⎪⎩(r1, . . . , rL)

∣∣∣∣∣∣∣
(r1, . . . , rL) ∈

∑
c∈C

RSIC
c (pmax

1c , . . . , pmax
Nc )∑

c∈C
pmax

nc ≤ pmax
n , n ∈ N

pmax
nc ≥ 0, n ∈ N , l ∈ L

⎫⎪⎬
⎪⎭.

The RA subproblem at the third step of dynamic cross-layer
control Algorithm 1 is shown in (26). Finding the solution
of this problem is extremely difficult, as aforementioned in
the single-channel case, i.e., C = 1. However by limiting the
access protocol so that only one node can transmit in all its
outgoing links in each slot, the problem can be identified as
a weighted sum-rate maximization over the capacity region of
parallel Gaussian broadcast channels [57]. When only one node
can receive from all its incoming links in each slot, the problem
can be cast as a weighted sum-rate maximization over the
capacity region of Gaussian vector multiaccess channel [61],
[62, Sec. 6].

APPENDIX C
BARRIER METHOD

In this section, we outline the basic steps in solving (28) us-
ing the barrier method [45, Sec. 11.3.1]. For notational simplic-
ity, let us define σρn(k) = σ2/gρn(k)ρn(k) for k = 1, . . . , |O(n)|
and σρn(|O(n)|+1) = 0. Furthermore, let ai be the ith column of

the upper triangular matrix A ∈ R
|O(n)|×|O(n)|
+ , with all nonzero

entries being equal to 1.

14Note that we assume equal channel bandwidths for all c ∈ C.

By characterizing the feasible set of rate allocation vector
rn = [rρn(1) . . . rρn(|O(n)|)]T [57, Sec. 3], (28) can equivalently
be expressed as

maximize
∑

l∈O(n)

βlrl

subject to gi(rn) ≤ 0, i = 1, . . . , |O(n)| + 1, (45)

where the variables are rn. The function gi(rn) can compactly
be expressed as

gi(rn)=

⎧⎨
⎩

−eT
i rn 1≤ i≤|O(n)|

|O(n)|∑
j=1

bn(j)ea
T
j rn−σρn(1)−pmax

n i= |O(n)|+1,

where bn(j) = σρn(j) − σρn(j+1). Problem (45) is a convex
optimization problem [45] and can therefore efficiently be
solved. Note that, given any feasible rn, the corresponding
power variables pρn(k), k = 1, . . . , |O(n)| are given by [57]

pρn(k) =
(
erρn(k) − 1

)∑
i≥k

bn(i)e
∑

k<j≤i
rρn(j) .

The barrier method [45, Sec. 11.3.1] can be used to solve
(45). The gradient and the Hessian of the function gi(rn) are
given by

∇gi(rn) =

{
−ei 1 ≤ i ≤ |O(n)|∑|O(n)|

j=1 bn(j)ea
T
j rnaj i = |O(n)| + 1

∇2gi(rn) =

{
0 1 ≤ i ≤ |O(n)|∑|O(n)|

j=1 bn(j)ea
T
j rnajaT

j i = |O(n)| + 1.

The aforementioned expressions are used to evaluate the
gradient and the Hessian of the logarithmic barrier function
[45, Sec. 11.2.1].
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