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Motivation – Why Privacy/Security ?

• social networks

• healthcare data

• e-commerce

• banks, and government services

Weeraddana, et al. (KTH, Univ. of MD) Application of Optimization for SMC CWC 21.05.13 2 / 22



Motivation – Why Privacy/Security ?

• social networks

• healthcare data

• e-commerce

• banks, and government services

Weeraddana, et al. (KTH, Univ. of MD) Application of Optimization for SMC CWC 21.05.13 2 / 22



Motivation – Why Privacy/Security ?

• social networks

• healthcare data

• e-commerce

• banks, and government services

Weeraddana, et al. (KTH, Univ. of MD) Application of Optimization for SMC CWC 21.05.13 2 / 22



Motivation – Why Privacy/Security ?

• social networks

• healthcare data

• e-commerce

• banks, and government services

Weeraddana, et al. (KTH, Univ. of MD) Application of Optimization for SMC CWC 21.05.13 2 / 22



Motivation – Why Privacy/Security ?

• social networks

• healthcare data

• e-commerce

• banks, and government services

Weeraddana, et al. (KTH, Univ. of MD) Application of Optimization for SMC CWC 21.05.13 2 / 22



Motivation – Why Privacy/Security ?

• real world:

- different parties, such as persons and organizations always interact
- they collaborate for mutual benefits

• collaboration is more appealing if security/privacy is guaranteed
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Real World

• example 1
- hospitals coordinate ⇒ inference for better diagnosis
- larger data sets ⇒ higher the accuracy of the inference
- challenge: neither of the data set should be revealed
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Real World

• example 2
- cloud customers outsource their problems to the cloud
- challenge: problem data shouldn’t be revealed to the cloud
- secured voting systems
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Real World

• example 3
- secured e-voting systems
- challenge: neither of the vote should be revealed
- secured voting systems
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Real World

• example 4
- millionaires’ problem [Yao82], i.e., check b1 ≤ b2
- challenge: neither b1 nor b2 should be revealed
- secured voting systems
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Secured Multiparty Computation

• solve, in a secured manner, the n-party problem of the form:

f(A1, . . . ,An) = inf
x∈{x|g(x,A1,...,An)�0}

f0(x1, . . . ,xn,A1, . . . ,An)

- Ai is the private data belonging to party i
- x = (x1, . . . ,xn) is the decision variable
- f0(·) is the global objective function
- g(·) is the vector-valued constraint function
- f(·) is the desired optimal value

• can we perform such computations with “acceptable” privacy
guaranties ?
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Our Contributions

• unified framework for existing methods for disguising private data

- absence of a systematic approach reduces the scope of applicability
- unintended mistakes (e.g., [Du01, Vai09])
- standard proof techniques for privacy guaranties.

• maneuvering decomposition methods, ADMM

• general definition for privacy ⇒ quantify the privacy

• a number of examples

• comparison: efficiency, scalability, and many others

• for details, see [WAJ+13]

[WAJ+13] P. C. Weeraddana, G. Athanasiou, M. Jakobsson, C. Fischione, and J. S. Baras. Per-se privacy preserving distributed

optimization
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General Formulation

we pose the design or decision making problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , q

Cx− d = 0 ,
(1)

• optimization variable is x = (x1, . . . , xn) ∈ IRn.

• fi, i = 0, . . . , q are convex

• C ∈ IRp×n with rank(C) = p

• d ∈ IRp

• we would like to solve the problem in a privacy preserving manner
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Unification, Disguising Private Data for SMC

Proposition (change of variables)
• φ : IRm → IRn be a function, with image covering the problem domain D
• change of variables:

x = φ(z) . (2)

• resulting problem:
minimize f0(φ(z))
subject to fi(φ(z)) ≤ 0, i = 1, . . . , q

Cφ(z)− d = 0
(3)

• x? solves problem (1) ⇒ z? = φ−1(x?) solves problem (3)

• z? solves problem (3) ⇒ x? = φ(z?) solves problem (1)

privacy is via the function compositions:

f̂i(z) = fi(φ(z)) , domf̂i = {z ∈ domφ | φ(z) ∈ domfi}

ĥi(z) = Cφ(z)− d , domĥi = {z ∈ domφ | φ(z) ∈ IRn}
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Example of Change of Variables

• affine transformation: x = φ(z) = Bz− a, B ∈ IRn×p,
rank(B) = n, a ∈ IRn.

• original problem:
minimize cTx
subject to Ax ≥ b

- variable is x ∈ IRn

- private data: A ∈ IRm×n, b ∈ IRm

• equivalent problem:

minimize ĉTz

subject to Âz ≥ b̂
- variable is z ∈ IRp

- data: ĉ = BTc ∈ IRp, Â = AB ∈ IRm×p, b̂ = b−Aa ∈ IRm
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Unification, Disguising Private Data for SMC

Proposition (transformation of objective and constraint functions)
• ψ0 : ID0 ⊆ IR→ IR is monotonically increasing and ID0 ⊇ imagef0

• ψi : IDi ⊆ IR→ IR, with IDi ⊇ imagefi and ψi(z) ≤ 0 ⇔ z ≤ 0

• ψ : IRp → IRm satisfies ψ(z) = 0 ⇔ z = 0

• if x? solves
minimize ψ0(f0(x))
subject to ψi(fi(x)) ≤ 0, i = 1, . . . , q

ψ(Cx− d) = 0 ,
(4)

then solution x? problem (1)

• the optimal value of problem (1), p?, and that of problem (4), q?, are related by

ψ0(p?) = q? . (5)

privacy is via the function compositions:

f̄i(x)=ψi(fi(x)) , domf̄i={x ∈ domfi | fi(x) ∈ domψi}

h̄i(x) = ψ(Cx− d) domh̄i = IRn
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Example of Transformation of Objective

• ψ0(z) = z2 + b

• original problem:

minimize ||Ax− b||2
- variable is x ∈ IRn

- private data: A ∈ IRm×n, b ∈ IRm

- rank(A) = n

• equivalent problem:

minimize ||Ax− b||22 − bTb = xTÂx− 2b̂Tx

- variable is x ∈ IRn

- data: Â = ATA ∈ IRn×n, b̂ = ATb ∈ IRn×1
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Quantify Privacy

Definition (Attacker model, Passive adversary)

• an entity involved in solving the global problem

• it obtain messages exchanged during different stages of the solution method

• keeps a record of all information it receives

• try to learn and to discover others’ private data

Definition (Adversarial knowledge)

• the set K of information that an adversary might exploit to discover private data

• set K can encompass

- real-valued components: Kreal

- transformed variants of private data
- statements
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Quantify Privacy

Definition (Privacy index, (ξ, η) ∈ [0, 1)× IN)

• private data c ∈ C is related to some adversarial knowledge k ∈ Kreal ⊆ K by a vector
values function fc : C × Kreal → IRm, such that fc(c,k) ≤ 0

• consider the uncertainty set

U = {c | fc(c,k) ≤ 0, fc is arbitrary, K} (6)

• then

ξ = 1− 1/NK , NK is the cardinality of U (7)

η = affine dimension of U (8)

ξ : a measure of probability that the adversary guesses wrong

η : indicates how effective the transformation disguises the private data
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Quantify Privacy
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Privacy Index in a Least-Squares Problem

• original problem:

minimize ||ax− b||2

- variable is x ∈ IR

- private data: a = (a1,a2) ∈ IR6, b = (b1,b2) ∈ IR6

- 2-parties: party i owns ai,bi , i = 1, 2

• equivalent problem:

minimize ||ax− b||22 − bTb = (r1 + r2)x
2 − 2(s1 + s2)x

- variable is x ∈ IR

- data: ri = aT
i ai i = 1, 2; si = aT

i bi, i = 1, 2
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Privacy Index in a Least-Squares Problem

• party 2 is the adversary and wants to discover a1

• knowledge of party 2

K =
{
r1, s1, {r1 = aT

1a1}, {s1 = bT
1a1}

}

• the uncertainty set of a1:

U =
{
a1

∣∣ r1 = aT
1a1, s1 = bT

1a1,b1 ∈ IR3
}
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1a1,b1 ∈ IR3
}
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r1 = aT
1a1

s1 = (1, 1, 1)Ta1

s1 = (0.2345, 0.2345, 1.7)Ta1

s1 = (−0.2345,−0.2345, 1.7)Ta1

b1 is arbitrary: (ξ, η) = (1, 3)

b1 is known: (ξ, η) = (1, 2)



Cryptographic vs Non-Cryptographic Methods

Cryptographic methods Non-Cryptographic methods

• large circuit representations (1000s of bits) no such restrictions
• to compute f(A1, . . . ,An)

• not scalable scalable

• finite field restriction for Ai no such restrictions

• hardly handle non-integer valued Ai no such restrictions
• (overflow, underflow, round-off, and truncations errors) HQ implementations (LAPACK,BLAS)

• f0 and g are often restricted no hard restrictions

• mechanism influences the algorithm iterations mechanism is transparent to the solver

• theory for general f0 and g are not promising there exist a rich and a promising theory,
e.g., convex optimization

• privacy guaranties for Ai are broadly studied to be investigated
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Cryptographic Vs Non-Cryptographic Methods

encrypting simplex algorithm iterations...a quote from Toft [Tof09]

- start with 32-bit numbers

- after ten iterations these have grown to 32 thousand bits

- after twenty iterations they have increased to 32 million

- even small inputs⇒ basic operations⇒ mod. exponentiations with a million bit modulus”

Inefficient
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Conclusions

If you think cryptography is
the answer to your problem,

then you dont know what
your problem is.

garbage
-Peter G. Numann

Principal Scientist, SRI International
Menlo Park, CA, 94025 USA

• cryptography is inefficient

• alternatives for cryptographic approaches: less investigated

• we believe that substantial research is required
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Thank you
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