ROYAL INSTITUTE OF TECHNOLOGY

Hydrobionets

On THE APPLICATION OF OPTIMIZATION METHODS FOR SECURED MULTIPARTY COMPUTATIONS

C. Weeraddana^, G. Athanasiou*, M. Jakobsson*, C. Fischione ${ }^{\star}$, and J. S. Baras*ぇ

*KTH Royal Institute of Technology, Stockholm, Sweden
** University of Maryland, MD, USA
\{chatw, georgioa, mjakobss, carlofi\}@kth.se; baras@umd.edu
CWC 21.05.13

Motivation - Why Privacy/Security ?

Motivation - Why Privacy/Security ?

- social networks

Motivation - Why Privacy/Security ?

- social networks
- healthcare data

Motivation - Why Privacy/Security ?

- social networks
- healthcare data
- e-commerce

Motivation - Why Privacy/Security ?

- social networks
- healthcare data
- e-commerce

- banks, and government services

Motivation - Why Privacy/Security ?

- real world:
- different parties, such as persons and organizations always interact
- they collaborate for mutual benefits

Motivation - Why Privacy/Security ?

- real world:
- different parties, such as persons and organizations always interact
- they collaborate for mutual benefits
- collaboration is more appealing if security/privacy is guaranteed

Real World

- example 1
- hospitals coordinate \Rightarrow inference for better diagnosis
- larger data sets \Rightarrow higher the accuracy of the inference
- challenge: neither of the data set should be revealed

hospital 1

data set 2

hospital 3

Real World

- example 2
- cloud customers outsource their problems to the cloud
- challenge: problem data shouldn't be revealed to the cloud

Real World

- example 3
- secured e-voting systems
- challenge: neither of the vote should be revealed
candidate 1

candidate 2

Real World

- example 4
- millionaires' problem [Yao82], i.e., check $b_{1} \leq b_{2}$
- challenge: neither b_{1} nor b_{2} should be revealed

Secured Multiparty Computation

- solve, in a secured manner, the n-party problem of the form:

$$
f\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)=\inf _{\mathbf{x} \in\left\{\mathbf{x} \mid \mathbf{g}\left(\mathbf{x}, \mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right) \preceq \mathbf{0}\right\}} f_{0}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)
$$

- \mathbf{A}_{i} is the private data belonging to party i
- $\mathbf{x}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ is the decision variable
- $f_{0}(\cdot)$ is the global objective function
- $\mathbf{g}(\cdot)$ is the vector-valued constraint function
- $f(\cdot)$ is the desired optimal value

Secured Multiparty Computation

- solve, in a secured manner, the n-party problem of the form:

$$
f\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)=\inf _{\mathbf{x} \in\left\{\mathbf{x} \mid \mathbf{g}\left(\mathbf{x}, \mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right) \preceq \mathbf{0}\right\}} f_{0}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)
$$

- \mathbf{A}_{i} is the private data belonging to party i
- $\mathbf{x}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ is the decision variable
- $f_{0}(\cdot)$ is the global objective function
- $\mathbf{g}(\cdot)$ is the vector-valued constraint function
- $f(\cdot)$ is the desired optimal value
- can we perform such computations with "acceptable" privacy guaranties ?

Overview

Our Contributions

Our Contributions

- unified framework for existing methods for disguising private data
- absence of a systematic approach reduces the scope of applicability
- unintended mistakes (e.g., [Du01, Vai09])
- standard proof techniques for privacy guaranties.
- maneuvering decomposition methods, ADMM
- general definition for privacy \Rightarrow quantify the privacy
- a number of examples
- comparison: efficiency, scalability, and many others
- for details, see [WAJ ${ }^{+} 13$]
$\left[\mathrm{WAJ}^{+} 13\right]$ P. C. Weeraddana, G. Athanasiou, M. Jakobsson, C. Fischione, and J. S. Baras. Per-se privacy preserving distributed optimization

General Formulation

we pose the design or decision making problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 0, i=1, \ldots, q \tag{1}\\
& \mathbf{C x}-\mathbf{d}=\mathbf{0}
\end{array}
$$

- optimization variable is $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
- $f_{i}, i=0, \ldots, q$ are convex
- $\mathbf{C} \in \mathbb{R}^{p \times n}$ with $\operatorname{rank}(\mathbf{C})=p$
- $\mathbf{d} \in \mathbb{R}^{p}$
- we would like to solve the problem in a privacy preserving manner

Unification, Disguising Private Data for SMC

Proposition (change of variables)

- $\phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function, with image covering the problem domain \mathcal{D}
- change of variables:

$$
\begin{equation*}
\mathbf{x}=\phi(\mathbf{z}) . \tag{2}
\end{equation*}
$$

- resulting problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\phi(\mathbf{z})) \\
\text { subject to } & f_{i}(\phi(\mathbf{z})) \leq 0, i=1, \ldots, q \tag{3}\\
& \mathbf{C} \phi(\mathbf{z})-\mathbf{d}=\mathbf{0}
\end{array}
$$

- \mathbf{x}^{\star} solves problem (1) $\Rightarrow \mathbf{z}^{\star}=\phi^{-1}\left(\mathbf{x}^{\star}\right)$ solves problem (3)
- \mathbf{z}^{\star} solves problem (3) $\Rightarrow \mathbf{x}^{\star}=\phi\left(\mathbf{z}^{\star}\right)$ solves problem (1)

Unification, Disguising Private Data for SMC

Proposition (change of variables)

- $\phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function, with image covering the problem domain \mathcal{D}
- change of variables:

$$
\begin{equation*}
\mathbf{x}=\phi(\mathbf{z}) . \tag{2}
\end{equation*}
$$

- resulting problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\phi(\mathbf{z})) \\
\text { subject to } & f_{i}(\phi(\mathbf{z})) \leq 0, i=1, \ldots, q \tag{3}\\
& \mathbf{C} \phi(\mathbf{z})-\mathbf{d}=\mathbf{0}
\end{array}
$$

- \mathbf{x}^{\star} solves problem (1) $\Rightarrow \mathbf{z}^{\star}=\phi^{-1}\left(\mathbf{x}^{\star}\right)$ solves problem (3)
- \mathbf{z}^{\star} solves problem (3) $\Rightarrow \mathbf{x}^{\star}=\phi\left(\mathbf{z}^{\star}\right)$ solves problem (1)
privacy is via the function compositions:

$$
\begin{gathered}
\hat{f}_{i}(\mathbf{z})=f_{i}(\phi(\mathbf{z})), \operatorname{dom} \hat{f}_{i}=\left\{\mathbf{z} \in \operatorname{dom} \phi \mid \phi(\mathbf{z}) \in \operatorname{dom} f_{i}\right\} \\
\hat{h}_{i}(\mathbf{z})=\mathbf{C} \phi(\mathbf{z})-\mathbf{d}, \operatorname{dom} \hat{h}_{i}=\left\{\mathbf{z} \in \operatorname{dom} \phi \mid \phi(\mathbf{z}) \in \mathbb{R}^{n}\right\}
\end{gathered}
$$

Example of Change of Variables

- affine transformation: $\mathbf{x}=\phi(\mathbf{z})=\mathbf{B} \mathbf{z}-\mathbf{a}, \mathbf{B} \in \mathbb{R}^{n \times p}$, $\operatorname{rank}(B)=n, \quad \mathbf{a} \in \mathbb{R}^{n}$.

Example of Change of Variables

- affine transformation: $\mathbf{x}=\phi(\mathbf{z})=\mathbf{B} \mathbf{z}-\mathbf{a}, \mathbf{B} \in \mathbb{R}^{n \times p}$, $\operatorname{rank}(B)=n, \quad \mathbf{a} \in \mathbb{R}^{n}$.
- original problem:
- variable is $\mathbf{x} \in \mathbb{R}^{n}$

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{\top} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \geq \mathbf{b}
\end{array}
$$

- private data: $\mathbf{A} \in \mathbb{R}^{m \times n}, \quad \mathbf{b} \in \mathbb{R}^{m}$

Example of Change of Variables

- affine transformation: $\mathbf{x}=\phi(\mathbf{z})=\mathbf{B z}-\mathbf{a}, \mathbf{B} \in \mathbb{R}^{n \times p}$, $\operatorname{rank}(B)=n, \quad \mathbf{a} \in \mathbb{R}^{n}$.
- original problem:
- variable is $\mathbf{x} \in \mathbb{R}^{n}$

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{\top} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \geq \mathbf{b}
\end{array}
$$

- private data: $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$
- equivalent problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \hat{\mathbf{c}}^{\top} \mathbf{z} \\
\text { subject to } & \hat{\mathbf{A}} \mathbf{z} \geq \hat{\mathbf{b}}
\end{array}
$$

- variable is $\mathbf{z} \in \mathbb{R}^{p}$
- data: $\hat{\mathbf{c}}=\mathbf{B}^{\top} \mathbf{c} \in \mathbb{R}^{p}, \hat{\mathbf{A}}=\mathbf{A B} \in \mathbb{R}^{m \times p}, \hat{\mathbf{b}}=\mathbf{b}-\mathbf{A a} \in \mathbb{R}^{m}$

Unification, Disguising Private Data for SMC

Proposition (transformation of objective and constraint functions)

- $\psi_{0}: \mathbb{D}_{0} \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is monotonically increasing and $\mathbb{D}_{0} \supseteq$ image f_{0}
- $\psi_{i}: \mathbb{D}_{i} \subseteq \mathbb{R} \rightarrow \mathbb{R}$, with $\mathbb{D}_{i} \supseteq$ imagef $_{i}$ and $\psi_{i}(z) \leq 0 \Leftrightarrow z \leq 0$
- $\psi: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$ satisfies $\psi(\mathbf{z})=\mathbf{0} \Leftrightarrow \mathbf{z}=\mathbf{0}$
- if \mathbf{x}^{\star} solves

$$
\begin{array}{ll}
\operatorname{minimize} & \psi_{0}\left(f_{0}(\mathbf{x})\right) \\
\text { subject to } & \psi_{i}\left(f_{i}(\mathbf{x})\right) \leq 0, i=1, \ldots, q \tag{4}\\
& \psi(\mathbf{C x}-\mathbf{d})=\mathbf{0}
\end{array}
$$

then solution \mathbf{x}^{\star} problem (1)

- the optimal value of problem (1), p^{\star}, and that of problem (4), q^{\star}, are related by

$$
\begin{equation*}
\psi_{0}\left(p^{\star}\right)=q^{\star} . \tag{5}
\end{equation*}
$$

Unification, Disguising Private Data for SMC

Proposition (transformation of objective and constraint functions)

- $\psi_{0}: \mathbb{D}_{0} \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is monotonically increasing and $\mathbb{D}_{0} \supseteq$ image f_{0}
- $\psi_{i}: \mathbb{D}_{i} \subseteq \mathbb{R} \rightarrow \mathbb{R}$, with $\mathbb{D}_{i} \supseteq$ imagef $_{i}$ and $\psi_{i}(z) \leq 0 \Leftrightarrow z \leq 0$
- $\psi: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$ satisfies $\psi(\mathbf{z})=\mathbf{0} \Leftrightarrow \mathbf{z}=\mathbf{0}$
- if \mathbf{x}^{\star} solves

$$
\begin{array}{ll}
\operatorname{minimize} & \psi_{0}\left(f_{0}(\mathbf{x})\right) \\
\text { subject to } & \psi_{i}\left(f_{i}(\mathbf{x})\right) \leq 0, i=1, \ldots, q \tag{4}\\
& \psi(\mathbf{C} \mathbf{x}-\mathbf{d})=\mathbf{0}
\end{array}
$$

then solution \mathbf{x}^{\star} problem (1)

- the optimal value of problem (1), p^{\star}, and that of problem (4), q^{\star}, are related by

$$
\begin{equation*}
\psi_{0}\left(p^{\star}\right)=q^{\star} . \tag{5}
\end{equation*}
$$

privacy is via the function compositions:

$$
\begin{gathered}
\bar{f}_{i}(\mathbf{x})=\psi_{i}\left(f_{i}(\mathbf{x})\right), \operatorname{dom} \bar{f}_{i}=\left\{\mathbf{x} \in \operatorname{dom} f_{i} \mid f_{i}(\mathbf{x}) \in \operatorname{dom} \psi_{i}\right\} \\
\bar{h}_{i}(\mathbf{x})=\psi(\mathbf{C x}-\mathbf{d}) \operatorname{dom} \bar{h}_{i}=\mathbb{R}^{n}
\end{gathered}
$$

Example of Transformation of Objective

- $\psi_{0}(z)=z^{2}+b$

Example of Transformation of Objective

- $\psi_{0}(z)=z^{2}+b$
- original problem:

$$
\operatorname{minimize}\|\mathbf{A x}-\mathbf{b}\|_{2}
$$

- variable is $x \in \mathbb{R}^{n}$
- private data: $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$
- $\operatorname{rank}(\mathbf{A})=n$

Example of Transformation of Objective

- $\psi_{0}(z)=z^{2}+b$
- original problem:

$$
\operatorname{minimize}\|\mathbf{A x}-\mathbf{b}\|_{2}
$$

- variable is $x \in \mathbb{R}^{n}$
- private data: $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$
- $\operatorname{rank}(\mathbf{A})=n$
- equivalent problem:

$$
\operatorname{minimize}\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}-\mathbf{b}^{\top} \mathbf{b}=\mathbf{x}^{\top} \hat{\mathbf{A}} \mathbf{x}-2 \hat{\mathbf{b}}^{\top} \mathbf{x}
$$

- variable is $\mathbf{x} \in \mathbb{R}^{n}$
- data: $\hat{\mathbf{A}}=\mathbf{A}^{\top} \mathbf{A} \in \mathbb{R}^{n \times n}, \hat{\mathbf{b}}=\mathbf{A}^{\top} \mathbf{b} \in \mathbb{R}^{n \times 1}$

Quantify Privacy

Definition (Attacker model, Passive adversary)

- an entity involved in solving the global problem
- it obtain messages exchanged during different stages of the solution method
- keeps a record of all information it receives
- try to learn and to discover others' private data

Quantify Privacy

Definition (Attacker model, Passive adversary)

- an entity involved in solving the global problem
- it obtain messages exchanged during different stages of the solution method
- keeps a record of all information it receives
- try to learn and to discover others' private data

Definition (Adversarial knowledge)

- the set \mathcal{K} of information that an adversary might exploit to discover private data
- set \mathcal{K} can encompass
- real-valued components: $\mathcal{K}_{\text {real }}$
- transformed variants of private data
- statements

Quantify Privacy

Definition (Privacy index, $(\xi, \eta) \in[0,1) \times \mathbb{N}$)

- private data $c \in \mathcal{C}$ is related to some adversarial knowledge $\mathbf{k} \in \mathcal{K}_{\text {real }} \subseteq \mathcal{K}$ by a vector values function $f_{c}: \mathcal{C} \times \mathcal{K}_{\text {real }} \rightarrow \mathbb{R}^{m}$, such that $f_{c}(c, \mathbf{k}) \leq \mathbf{0}$
- consider the uncertainty set

$$
\begin{equation*}
\mathcal{U}=\left\{c \mid f_{c}(c, \mathbf{k}) \leq \mathbf{0}, f_{c} \text { is arbitrary, } \mathcal{K}\right\} \tag{6}
\end{equation*}
$$

- then

$$
\begin{align*}
& \xi=1-1 / N_{\mathcal{K}}, \quad N_{\mathcal{K}} \text { is the cardinality of } \mathcal{U} \tag{7}\\
& \eta=\text { affine dimension of } \mathcal{U} \tag{8}
\end{align*}
$$

Quantify Privacy

Definition (Privacy index, $(\xi, \eta) \in[0,1) \times \mathbb{N}$)

- private data $c \in \mathcal{C}$ is related to some adversarial knowledge $\mathbf{k} \in \mathcal{K}_{\text {real }} \subseteq \mathcal{K}$ by a vector values function $f_{c}: \mathcal{C} \times \mathcal{K}_{\text {real }} \rightarrow \mathbb{R}^{m}$, such that $f_{c}(c, \mathbf{k}) \leq \mathbf{0}$
- consider the uncertainty set

$$
\begin{equation*}
\mathcal{U}=\left\{c \mid f_{c}(c, \mathbf{k}) \leq \mathbf{0}, f_{c} \text { is arbitrary, } \mathcal{K}\right\} \tag{6}
\end{equation*}
$$

- then

$$
\begin{align*}
\xi & =1-1 / N_{\mathcal{K}}, \quad N_{\mathcal{K}} \text { is the cardinality of } \mathcal{U} \tag{7}\\
\eta & =\text { affine dimension of } \mathcal{U} \tag{8}
\end{align*}
$$

ξ : a measure of probability that the adversary guesses wrong
η : indicates how effective the transformation disguises the private data

Quantify Privacy

Privacy Index in a Least-Squares Problem

- original problem:

$$
\operatorname{minimize} \quad\|\mathbf{a} x-\mathbf{b}\|_{2}
$$

- variable is $x \in \mathbb{R}$
- private data: $\mathbf{a}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right) \in \mathbb{R}^{6}, \mathbf{b}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right) \in \mathbb{R}^{6}$
- 2-parties: party i owns $\mathbf{a}_{i}, \mathbf{b}_{i}, i=1,2$
- equivalent problem:

$$
\operatorname{minimize}\|\mathbf{a} x-\mathbf{b}\|_{2}^{2}-\mathbf{b}^{\top} \mathbf{b}=\left(r_{1}+r_{2}\right) x^{2}-2\left(s_{1}+s_{2}\right) x
$$

- variable is $x \in \mathbb{R}$
- data: $r_{i}=\mathbf{a}_{i}^{\top} \mathbf{a}_{i} i=1,2 ; \quad s_{i}=\mathbf{a}_{i}^{\top} \mathbf{b}_{i}, i=1,2$

Privacy Index in a Least-Squares Problem

- original problem:

$$
\operatorname{minimize} \quad\|\mathbf{a} x-\mathbf{b}\|_{2}
$$

- variable is $x \in \mathbb{R}$
- private data: $\mathbf{a}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right) \in \mathbb{R}^{6}, \mathbf{b}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right) \in \mathbb{R}^{6}$
- 2-parties: party i owns $\mathbf{a}_{i}, \mathbf{b}_{i}, i=1,2$
- equivalent problem:

$$
\operatorname{minimize}\|\mathbf{a} x-\mathbf{b}\|_{2}^{2}-\mathbf{b}^{\top} \mathbf{b}=\left(r_{1}+r_{2}\right) x^{2}-2\left(s_{1}+s_{2}\right) x
$$

- variable is $x \in \mathbb{R}$
- data: $r_{i}=\mathbf{a}_{i}^{\top} \mathbf{a}_{i} i=1,2 ; \quad s_{i}=\mathbf{a}_{i}^{\top} \mathbf{b}_{i}, i=1,2$

Privacy Index in a Least-Squares Problem

- party 2 is the adversary and wants to discover \mathbf{a}_{1}
- knowledge of party 2

$$
\mathcal{K}=\left\{r_{1}, s_{1},\left\{r_{1}=\mathbf{a}_{1}^{\top} \mathbf{a}_{1}\right\},\left\{s_{1}=\mathbf{b}_{1}^{\top} \mathbf{a}_{1}\right\}\right\}
$$

- the uncertainty set of \mathbf{a}_{1} :

$$
\mathcal{U}=\left\{\mathbf{a}_{1} \mid r_{1}=\mathbf{a}_{1}^{\top} \mathbf{a}_{1}, s_{1}=\mathbf{b}_{1}^{\top} \mathbf{a}_{1}, \mathbf{b}_{1} \in \mathbb{R}^{3}\right\}
$$

Privacy Index in a Least-Squares Problem

- the uncertainty set of \mathbf{a}_{1} :

$$
\mathcal{U}=\left\{\mathbf{a}_{1} \mid r_{1}=\mathbf{a}_{1}^{\top} \mathbf{a}_{1}, s_{1}=\mathbf{b}_{1}^{\top} \mathbf{a}_{1}, \mathbf{b}_{1} \in \mathbb{R}^{3}\right\}
$$

Privacy Index in a Least-Squares Problem

- the uncertainty set of \mathbf{a}_{1} :

$$
\mathcal{U}=\left\{\mathbf{a}_{1} \mid r_{1}=\mathbf{a}_{1}^{\top} \mathbf{a}_{1}, s_{1}=\mathbf{b}_{1}^{\top} \mathbf{a}_{1}, \mathbf{b}_{1} \in \mathbb{R}^{3}\right\}
$$

Privacy Index in a Least-Squares Problem

- the uncertainty set of \mathbf{a}_{1} :

$$
\mathcal{U}=\left\{\mathbf{a}_{1} \mid r_{1}=\mathbf{a}_{1}^{\top} \mathbf{a}_{1}, s_{1}=\mathbf{b}_{1}^{\top} \mathbf{a}_{1}, \mathbf{b}_{1} \in \mathbb{R}^{3}\right\}
$$

Privacy Index in a Least-Squares Problem

- the uncertainty set of \mathbf{a}_{1} :

$$
\mathcal{U}=\left\{\mathbf{a}_{1} \mid r_{1}=\mathbf{a}_{1}^{\top} \mathbf{a}_{1}, s_{1}=\mathbf{b}_{1}^{\top} \mathbf{a}_{1}, \mathbf{b}_{1} \in \mathbb{R}^{3}\right\}
$$

Privacy Index in a Least-Squares Problem

- the uncertainty set of \mathbf{a}_{1} :

$$
\mathcal{U}=\left\{\mathbf{a}_{1} \mid r_{1}=\mathbf{a}_{1}^{\top} \mathbf{a}_{1}, s_{1}=\mathbf{b}_{1}^{\top} \mathbf{a}_{1}, \mathbf{b}_{1} \in \mathbb{R}^{3}\right\}
$$

Privacy Index in a Least-Squares Problem

\mathbf{b}_{1} is known: $(\xi, \eta)=(1,2)$
\mathbf{b}_{1} is arbitrary: $(\xi, \eta)=(1,3)$

Cryptographic vs Non-Cryptographic Methods

-

Cryptographic methods	Non-Cryptographic methods
- large circuit representations $(1000$ s of bits) to compute $f\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)$	no such restrictions
- not scalable	scalable
- finite field restriction for \mathbf{A}_{i}	no such restrictions
- hardly handle non-integer valued \mathbf{A}_{i} (overflow, underflow, round-off, and truncations errors)	no such restrictions HQ implementations (LAPACK,BLAS)
- f_{0} and \mathbf{g} are often restricted	no hard restrictions
- mechanism influences the algorithm iterations	mechanism is transparent to the solver there exist a rich and a promising theory, e.g., convex optimization
- theory for general f_{0} and \mathbf{g} are not promising	to be investigated
- privacy guaranties for \mathbf{A}_{i} are broadly studied	

Cryptographic vs Non-Cryptographic Methods

-

Cryptographic methods	Non-Cryptographic methods
- large circuit representations (1000s of bits)	
to compute $f\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)$	no such restrictions

- not scalable
scalable
- finite field restriction for \mathbf{A}_{i}
no such restrictions
- hardly handle non-integer valued \mathbf{A}_{i}
(overflow, underflow, round-off, and truncations errors)
no such restrictions
HQ implementations (LAPACK,BLAS)
- f_{0} and \mathbf{g} are often restricted
no hard restrictions
- mechanism influences the algorithm iterations
mechanism is transparent to the solver
- theory for general f_{0} and \mathbf{g} are not promising
there exist a rich and a promising theory, e.g., convex optimization
- privacy guaranties for \mathbf{A}_{i} are broadly studied
to be investigated

Cryptographic Vs Non-Cryptographic Methods

encrypting simplex algorithm iterations...a quote from Toft [Tof09]

- start with 32-bit numbers
- after ten iterations these have grown to 32 thousand bits
- after twenty iterations they have increased to 32 million
- even small inputs \Rightarrow basic operations \Rightarrow mod. exponentiations with a million bit modulus"

Cryptographic Vs Non-Cryptographic Methods

encrypting simplex algorithm iterations...a quote from Toft [Tof09]

- start with 32-bit numbers
- after ten iterations these have grown to 32 thousand bits
- after twenty iterations they have increased to 32 million
- even small inputs \Rightarrow basic operations \Rightarrow mod. exponentiations with a million bit modulus"

Inefficient

Conclusions

If you think cryptography is the answer to your problem, then you dont know what your problem is.
-Peter G. Numann
Principal Scientist, SRI International Menlo Park, CA, 94025 USA

Conclusions

If you think cryptography is the answer to your problem, then you dont know what your problem is.
-Peter G. Numann
Principal Scientist, SRI International Menlo Park, CA, 94025 USA

- cryptography is inefficient
- alternatives for cryptographic approaches: less investigated
- we believe that substantial research is required

Thank you

ROYAL INSTITUTE OF TECHNOLOGY

On THE APPLICATION OF OPTIMIZATION METHODS FOR SECURED MULTIPARTY COMPUTATIONS

C. Weeraddana^, G. Athanasiou*, M. Jakobsson*, C. Fischione ${ }^{\star}$, and J. S. Baras*ぇ

*KTH Royal Institute of Technology, Stockholm, Sweden
** University of Maryland, MD, USA
\{chatw, georgioa, mjakobss, carlofi\}@kth.se; baras@umd.edu
CWC 21.05.13
[Du01] W. Du.
A Study of Several Specific Secure Two-Party Computation Problems.
PhD thesis, Purdue University, 2001.
[Tof09] T. Toft.
Solving linear programs using multiparty computation.
Financ. Crypt. and Data Sec. LNCS, pages 90-107, 2009.
[Vai09] J. Vaidya.
Privacy-preserving linear programming.
In Proc. ACM Symp. on App. Comp., pages 2002-2007, Honolulu, Hawaii, USA, March 2009.
[WAJ ${ }^{+}$13] P. C. Weeraddana, G. Athanasiou, M. Jakobsson, C. Fischione, and J. S.
Baras.
Per-se privacy preserving distributed optimization.
arXiv, Cornell University Library, 2013.
[Online]. Available: http://arxiv.org/abs/1210.3283.
[Yao82] A. C. Yao.
Protocols for secure computations.
In Proc. IEEE Symp. Found. of Comp. Science, pages 160-164, Chicago, USA, November 1982.

