

On the application of optimization methods for secured multiparty computations

C. Weeraddana*, G. Athanasiou*, M. Jakobsson*, C. Fischione*, and J. S. Baras**

*KTH Royal Institute of Technology, Stockholm, Sweden **University of Maryland, MD, USA {chatw, georgioa, mjakobss, carlofi}@kth.se; baras@umd.edu

CWC 21.05.13

• social networks

social networks

• healthcare data

- real world:
 - different parties, such as persons and organizations always interact
 - they collaborate for mutual benefits

- real world:
 - different parties, such as persons and organizations always interact
 - they collaborate for mutual benefits

 $\bullet\,$ collaboration is more appealing if security/privacy is guaranteed

- hospitals coordinate \Rightarrow inference for better diagnosis
- larger data sets \Rightarrow higher the accuracy of the inference
- challenge: neither of the data set should be revealed

- cloud customers outsource their problems to the cloud
- challenge: problem data shouldn't be revealed to the cloud

- secured e-voting systems
- challenge: neither of the vote should be revealed

- millionaires' problem [Yao82], i.e., check $b_1 \leq b_2$
- challenge: neither b_1 nor b_2 should be revealed

Secured Multiparty Computation

• solve, in a secured manner, the *n*-party problem of the form:

$$f(\mathbf{A}_1,\ldots,\mathbf{A}_n) = \inf_{\mathbf{x}\in\{\mathbf{x}\mid \mathbf{g}(\mathbf{x},\mathbf{A}_1,\ldots,\mathbf{A}_n)\leq\mathbf{0}\}} f_0(\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{A}_1,\ldots,\mathbf{A}_n)$$

- \mathbf{A}_i is the private data belonging to party i
- $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ is the decision variable
- $f_0(\cdot)$ is the global objective function
- $\mathbf{g}(\cdot)$ is the vector-valued constraint function
- $f(\cdot)$ is the desired optimal value

Secured Multiparty Computation

• solve, in a secured manner, the *n*-party problem of the form:

$$f(\mathbf{A}_1,\ldots,\mathbf{A}_n) = \inf_{\mathbf{x}\in\{\mathbf{x}\mid \mathbf{g}(\mathbf{x},\mathbf{A}_1,\ldots,\mathbf{A}_n)\leq\mathbf{0}\}} f_0(\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{A}_1,\ldots,\mathbf{A}_n)$$

- \mathbf{A}_i is the private data belonging to party i
- $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ is the decision variable
- $f_0(\cdot)$ is the global objective function
- $\mathbf{g}(\cdot)$ is the vector-valued constraint function
- $f(\cdot)$ is the desired optimal value

• can we perform such computations with "acceptable" privacy guaranties ?

Our Contributions

Our Contributions

- unified framework for existing methods for disguising private data
 - absence of a systematic approach reduces the scope of applicability
 - unintended mistakes (e.g., [Du01, Vai09])
 - standard proof techniques for privacy guaranties.
- maneuvering decomposition methods, ADMM
- general definition for privacy \Rightarrow quantify the privacy
- a number of examples
- comparison: efficiency, scalability, and many others
- for details, see $[WAJ^+13]$

[WAJ⁺13] P. C. Weeraddana, G. Athanasiou, M. Jakobsson, C. Fischione, and J. S. Baras. Per-se privacy preserving distributed optimization

General Formulation

(1)

we pose the design or decision making problem

$$\begin{array}{ll} \text{minimize} & f_0(\mathbf{x}) \\ \text{subject to} & f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, q \\ & \mathbf{C}\mathbf{x} - \mathbf{d} = \mathbf{0} \ , \end{array}$$

- optimization variable is $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.
- $f_i, i = 0, \ldots, q$ are convex
- $\mathbf{C} \in {\rm I\!R}^{p imes n}$ with ${\rm rank}(\mathbf{C}) = p$
- $\mathbf{d} \in \mathbb{R}^p$

• we would like to solve the problem in a privacy preserving manner

Unification, Disguising Private Data for SMC

(3)

Proposition (change of variables)

• $\phi: \mathbb{R}^m \to \mathbb{R}^n$ be a function, with image covering the problem domain $\mathcal D$

2

• change of variables:

$$\mathbf{x} = \phi(\mathbf{z}) \ . \tag{2}$$

resulting problem:

minimize	$f_0(\phi(\mathbf{z}))$
subject to	$f_i(\phi(\mathbf{z})) \le 0, \ i = 1, \dots, q$
	$\mathbf{C}\phi(\mathbf{z}) - \mathbf{d} = 0$

- \mathbf{x}^* solves problem (1) $\Rightarrow \mathbf{z}^* = \phi^{-1}(\mathbf{x}^*)$ solves problem (3)
- \mathbf{z}^* solves problem (3) $\Rightarrow \mathbf{x}^* = \phi(\mathbf{z}^*)$ solves problem (1)

Unification, Disguising Private Data for SMC

(3)

Proposition (change of variables)

• $\phi: \mathbb{R}^m \to \mathbb{R}^n$ be a function, with image covering the problem domain $\mathcal D$

3

• change of variables:

$$\mathbf{c} = \phi(\mathbf{z})$$
 . (2)

resulting problem:

 $\begin{array}{ll} \mbox{minimize} & f_0(\phi(\mathbf{z})) \\ \mbox{subject to} & f_i(\phi(\mathbf{z})) \leq 0, \ i = 1, \dots, q \\ & \mathbf{C}\phi(\mathbf{z}) - \mathbf{d} = \mathbf{0} \end{array}$

- \mathbf{x}^* solves problem (1) $\Rightarrow \mathbf{z}^* = \phi^{-1}(\mathbf{x}^*)$ solves problem (3)
- \mathbf{z}^* solves problem (3) $\Rightarrow \mathbf{x}^* = \phi(\mathbf{z}^*)$ solves problem (1)

privacy is via the function compositions:

$$\hat{f}_i(\mathbf{z}) = f_i(\phi(\mathbf{z})) , \ \mathsf{dom}\hat{f}_i = \{\mathbf{z} \in \mathsf{dom}\phi \mid \phi(\mathbf{z}) \in \mathsf{dom}f_i\}$$

$$\hat{h}_i(\mathbf{z}) = \mathbf{C}\phi(\mathbf{z}) - \mathbf{d} \ , \ \mathsf{dom}\hat{h}_i = \{\mathbf{z} \in \mathsf{dom}\phi \mid \phi(\mathbf{z}) \in \mathbb{R}^n\}$$

10 / 22

Example of Change of Variables

• affine transformation: $\mathbf{x} = \phi(\mathbf{z}) = \mathbf{B}\mathbf{z} - \mathbf{a}, \ \mathbf{B} \in \mathbb{R}^{n \times p}$, rank $(B) = n, \ \mathbf{a} \in \mathbb{R}^{n}$.

Example of Change of Variables

- affine transformation: $\mathbf{x} = \phi(\mathbf{z}) = \mathbf{B}\mathbf{z} \mathbf{a}, \ \mathbf{B} \in \mathbb{R}^{n \times p}$, rank $(B) = n, \ \mathbf{a} \in \mathbb{R}^{n}$.
- original problem:

 $\begin{array}{ll} \mbox{minimize} & \mathbf{c}^{\mathsf{T}}\mathbf{x} \\ \mbox{subject to} & \mathbf{A}\mathbf{x} \geq \mathbf{b} \end{array}$

- variable is $\mathbf{x} \in {\rm I\!R}^n$
- private data: $\mathbf{A} \in {\rm I\!R}^{m imes n}$, $\mathbf{b} \in {\rm I\!R}^m$

Example of Change of Variables

- affine transformation: $\mathbf{x} = \phi(\mathbf{z}) = \mathbf{B}\mathbf{z} \mathbf{a}, \ \mathbf{B} \in \mathbb{R}^{n \times p}$, rank $(B) = n, \ \mathbf{a} \in \mathbb{R}^{n}$.
- original problem:

- variable is $\mathbf{x} \in {\rm I\!R}^n$
- private data: $\mathbf{A} \in {\rm I\!R}^{m imes n}$, $\mathbf{b} \in {\rm I\!R}^m$
- equivalent problem:

- variable is $\mathbf{z} \in {\rm I\!R}^p$
- data: $\hat{\mathbf{c}} = \mathbf{B}^\mathsf{T} \mathbf{c} \in \mathbb{R}^p$, $\hat{\mathbf{A}} = \mathbf{A} \mathbf{B} \in \mathbb{R}^{m \times p}$, $\hat{\mathbf{b}} = \mathbf{b} \mathbf{A} \mathbf{a} \in \mathbb{R}^m$

Unification, Disguising Private Data for SMC

Proposition (transformation of objective and constraint functions)

- $\psi_0: \mathbb{D}_0 \subseteq \mathbb{R} \to \mathbb{R}$ is monotonically increasing and $\mathbb{D}_0 \supseteq$ image f_0
- $\psi_i : \mathbb{D}_i \subseteq \mathbb{R} \to \mathbb{R}$, with $\mathbb{D}_i \supseteq imagef_i$ and $\psi_i(z) \le 0 \Leftrightarrow z \le 0$
- $\psi : \mathbb{R}^p \to \mathbb{R}^m$ satisfies $\psi(\mathbf{z}) = \mathbf{0} \Leftrightarrow \mathbf{z} = \mathbf{0}$
- if \mathbf{x}^{\star} solves

$$\begin{array}{ll} \text{minimize} & \psi_0(f_0(\mathbf{x})) \\ \text{subject to} & \psi_i(f_i(\mathbf{x})) \le 0, \ i = 1, \dots, q \\ & \psi(\mathbf{Cx} - \mathbf{d}) = \mathbf{0} \ , \end{array}$$

$$\tag{4}$$

then solution \mathbf{x}^* problem (1)

the optimal value of problem (1), p^{*}, and that of problem (4), q^{*}, are related by

$$\psi_0(p^\star) = q^\star \ . \tag{5}$$

Unification, Disguising Private Data for SMC

Proposition (transformation of objective and constraint functions)

- $\psi_0: \mathbb{D}_0 \subseteq \mathbb{R} \to \mathbb{R}$ is monotonically increasing and $\mathbb{D}_0 \supseteq$ image f_0
- $\psi_i : \mathbb{D}_i \subseteq \mathbb{R} \to \mathbb{R}$, with $\mathbb{D}_i \supseteq imagef_i$ and $\psi_i(z) \le 0 \Leftrightarrow z \le 0$
- $\psi : \mathbb{R}^p \to \mathbb{R}^m$ satisfies $\psi(\mathbf{z}) = \mathbf{0} \Leftrightarrow \mathbf{z} = \mathbf{0}$
- if \mathbf{x}^{\star} solves

$$\begin{array}{ll} \text{minimize} & \psi_0(f_0(\mathbf{x})) \\ \text{subject to} & \psi_i(f_i(\mathbf{x})) \le 0, \ i = 1, \dots, q \\ & \psi(\mathbf{Cx} - \mathbf{d}) = \mathbf{0} \ , \end{array}$$
(4)

then solution \mathbf{x}^* problem (1)

the optimal value of problem (1), p^{*}, and that of problem (4), q^{*}, are related by

$$\psi_0(p^\star) = q^\star \ . \tag{5}$$

privacy is via the function compositions:

$$\bar{f}_i(\mathbf{x}) = \psi_i(f_i(\mathbf{x})) , \ \operatorname{dom} \bar{f}_i = \{ \mathbf{x} \in \operatorname{dom} f_i \mid f_i(\mathbf{x}) \in \operatorname{dom} \psi_i \}$$

$$\bar{h}_i(\mathbf{x}) = \psi(\mathbf{C}\mathbf{x} - \mathbf{d}) \ \operatorname{dom}\bar{h}_i = \mathbb{R}^n$$

Example of Transformation of Objective

• $\psi_0(z) = z^2 + b$

Example of Transformation of Objective

12 / 22

- $\psi_0(z) = z^2 + b$
- original problem:

minimize $||\mathbf{A}\mathbf{x} - \mathbf{b}||_2$

- variable is $\mathbf{x} \in {\rm I\!R}^n$
- private data: $\mathbf{A} \in \mathbb{R}^{m imes n}$, $\mathbf{b} \in \mathbb{R}^m$
- $rank(\mathbf{A}) = n$

Example of Transformation of Objective

- $\psi_0(z) = z^2 + b$
- original problem:

minimize
$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_2$$

- variable is $\mathbf{x} \in {\rm I\!R}^n$
- private data: $\mathbf{A} \in {\rm I\!R}^{m imes n}$, $\mathbf{b} \in {\rm I\!R}^m$
- $rank(\mathbf{A}) = n$
- equivalent problem:

minimize
$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 - \mathbf{b}^{\mathsf{T}}\mathbf{b} = \mathbf{x}^{\mathsf{T}}\hat{\mathbf{A}}\mathbf{x} - 2\hat{\mathbf{b}}^{\mathsf{T}}\mathbf{x}$$

- variable is $\mathbf{x} \in {\rm I\!R}^n$
- data: $\hat{\mathbf{A}} = \mathbf{A}^\mathsf{T} \mathbf{A} \in \mathbb{R}^{n \times n}$, $\hat{\mathbf{b}} = \mathbf{A}^\mathsf{T} \mathbf{b} \in \mathbb{R}^{n \times 1}$

Definition (Attacker model, Passive adversary)

- an entity involved in solving the global problem
- it obtain messages exchanged during different stages of the solution method
- keeps a record of all information it receives
- try to learn and to discover others' private data

Definition (Attacker model, Passive adversary)

- an entity involved in solving the global problem
- it obtain messages exchanged during different stages of the solution method
- keeps a record of all information it receives
- try to learn and to discover others' private data

Definition (Adversarial knowledge)

- $\bullet\,$ the set ${\cal K}$ of information that an adversary might exploit to discover private data
- $\bullet \ \ \, \text{set} \ \, \mathcal{K} \ \, \text{can encompass}$
 - real-valued components: $\mathcal{K}_{\mathrm{real}}$
 - transformed variants of private data
 - statements

Definition (Privacy index, $(\xi, \eta) \in [0, 1) \times \mathbb{N}$)

- private data $c \in C$ is related to some adversarial knowledge $\mathbf{k} \in \mathcal{K}_{real} \subseteq \mathcal{K}$ by a vector values function $f_c : C \times \mathcal{K}_{real} \to \mathbb{R}^m$, such that $f_c(c, \mathbf{k}) \leq \mathbf{0}$
- consider the uncertainty set

$$\mathcal{U} = \{ c \mid f_c(c, \mathbf{k}) \le \mathbf{0}, \ f_c \text{ is arbitrary}, \ \mathcal{K} \}$$
(6)

then

$$\xi = 1 - 1/N_{\mathcal{K}} , \quad N_{\mathcal{K}} \text{ is the cardinality of } \mathcal{U}$$

$$\eta = \text{affine dimension of } \mathcal{U}$$

$$(8)$$

Definition (Privacy index, $(\xi, \eta) \in [0, 1) \times \mathbb{N}$)

- private data $c \in C$ is related to some adversarial knowledge $\mathbf{k} \in \mathcal{K}_{real} \subseteq \mathcal{K}$ by a vector values function $f_c : C \times \mathcal{K}_{real} \to \mathbb{R}^m$, such that $f_c(c, \mathbf{k}) \leq \mathbf{0}$
- consider the uncertainty set

$$\mathcal{U} = \{ c \mid f_c(c, \mathbf{k}) \le \mathbf{0}, \ f_c \text{ is arbitrary, } \mathcal{K} \}$$
(6)

then

$$\xi = 1 - 1/N_{\mathcal{K}} , \quad N_{\mathcal{K}} \text{ is the cardinality of } \mathcal{U}$$
(7)

$$\eta = \text{affine dimension of } \mathcal{U}$$
(8)

 $\boldsymbol{\xi}:$ a measure of probability that the adversary guesses wrong

 $\boldsymbol{\eta}:$ indicates how effective the transformation disguises the private data

• original problem:

minimize $||\mathbf{a}x - \mathbf{b}||_2$

- variable is $x \in {\rm I\!R}$
- private data: $\mathbf{a}=(\mathbf{a}_1,\mathbf{a}_2)\in {\rm I\!R}^6$, $\mathbf{b}=(\mathbf{b}_1,\mathbf{b}_2)\in {\rm I\!R}^6$
- 2-parties: party i owns $\mathbf{a}_i, \mathbf{b}_i$, i=1,2

• equivalent problem:

minimize
$$||\mathbf{a}x - \mathbf{b}||_2^2 - \mathbf{b}^{\mathsf{T}}\mathbf{b} = (r_1 + r_2)x^2 - 2(s_1 + s_2)x$$

- variable is $x \in {\rm I\!R}$

- data:
$$r_i = \mathbf{a}_i^{\mathsf{T}} \mathbf{a}_i \ i = 1, 2; \ s_i = \mathbf{a}_i^{\mathsf{T}} \mathbf{b}_i, \ i = 1, 2$$

• original problem:

minimize $||\mathbf{a}x - \mathbf{b}||_2$

- variable is $x \in {\rm I\!R}$
- private data: $\mathbf{a}=(\mathbf{a}_1,\mathbf{a}_2)\in {\rm I\!R}^6$, $\mathbf{b}=(\mathbf{b}_1,\mathbf{b}_2)\in {\rm I\!R}^6$
- 2-parties: party i owns $\mathbf{a}_i, \mathbf{b}_i$, i=1,2

• equivalent problem:

minimize
$$||\mathbf{a}x - \mathbf{b}||_2^2 - \mathbf{b}^{\mathsf{T}}\mathbf{b} = (r_1 + r_2)x^2 - 2(s_1 + s_2)x$$

- variable is $x \in {\rm I\!R}$

- data:
$$r_i = \mathbf{a}_i^{\mathsf{T}} \mathbf{a}_i \ i = 1, 2; \ s_i = \mathbf{a}_i^{\mathsf{T}} \mathbf{b}_i, \ i = 1, 2$$

- party 2 is the adversary and wants to discover \mathbf{a}_1

knowledge of party 2

$$\mathcal{K} = \left\{ r_1, s_1, \{ r_1 = \mathbf{a}_1^\mathsf{T} \mathbf{a}_1 \}, \{ s_1 = \mathbf{b}_1^\mathsf{T} \mathbf{a}_1 \} \right\}$$

• the uncertainty set of a_1 :

$$\mathcal{U} = \left\{ \mathbf{a}_1 \mid r_1 = \mathbf{a}_1^{\mathsf{T}} \mathbf{a}_1, s_1 = \mathbf{b}_1^{\mathsf{T}} \mathbf{a}_1, \mathbf{b}_1 \in {\rm I\!R}^3 \right\}$$

• the uncertainty set of a_1 :

$$\mathcal{U} = \left\{ \mathbf{a}_1 \mid r_1 = \mathbf{a}_1^\mathsf{T} \mathbf{a}_1, s_1 = \mathbf{b}_1^\mathsf{T} \mathbf{a}_1, \mathbf{b}_1 \in \mathbb{R}^3 \right\}$$

• the uncertainty set of a_1 :

$$\mathcal{U} = \left\{ \mathbf{a}_1 \ \left| \ r_1 = \mathbf{a}_1^\mathsf{T} \mathbf{a}_1, s_1 = \mathbf{b}_1^\mathsf{T} \mathbf{a}_1, \mathbf{b}_1 \in \mathbb{R}^3 \right. \right\}$$

• the uncertainty set of \mathbf{a}_1 :

$$\mathcal{U} = \left\{ \mathbf{a}_1 \mid r_1 = \mathbf{a}_1^{\mathsf{T}} \mathbf{a}_1, s_1 = \mathbf{b}_1^{\mathsf{T}} \mathbf{a}_1, \mathbf{b}_1 \in \mathbb{R}^3 \right\}$$

• the uncertainty set of \mathbf{a}_1 :

$$\mathcal{U} = \left\{ \mathbf{a}_1 \ \left| \ r_1 = \mathbf{a}_1^{\mathsf{T}} \mathbf{a}_1, s_1 = \mathbf{b}_1^{\mathsf{T}} \mathbf{a}_1, \mathbf{b}_1 \in \mathbb{R}^3 \right. \right\}$$

• the uncertainty set of \mathbf{a}_1 :

$$\mathcal{U} = \left\{ \mathbf{a}_1 \mid r_1 = \mathbf{a}_1^\mathsf{T} \mathbf{a}_1, s_1 = \mathbf{b}_1^\mathsf{T} \mathbf{a}_1, \mathbf{b}_1 \in \mathbb{R}^3 \right\}$$

 $\mathbf{b}_1 \text{ is known: } (\xi,\eta) = (1,2) \\ \mathbf{b}_1 \text{ is arbitrary: } (\xi,\eta) = (1,3)$

Cryptographic vs Non-Cryptographic Methods

Cryptographic methods	Non-Cryptographic methods
• large circuit representations (1000s of bits) to compute $f(\mathbf{A}_1,\ldots,\mathbf{A}_n)$	no such restrictions
• not scalable	scalable
${\mbox{ \bullet}}$ finite field restriction for ${} {} _i$	no such restrictions
\bullet hardly handle non-integer valued \mathbf{A}_i (overflow, underflow, round-off, and truncations errors)	no such restrictions HQ implementations (LAPACK,BLAS)
$\bullet~f_0$ and ${\bf g}$ are often restricted	no hard restrictions
• mechanism influences the algorithm iterations	mechanism is transparent to the solver
${\mbox{\circ}}$ theory for general f_0 and ${\mbox{g}}$ are not promising	there exist a rich and a promising theory, e.g., convex optimization
$ullet$ privacy guaranties for \mathbf{A}_i are broadly studied	to be investigated

Cryptographic vs Non-Cryptographic Methods

Cryptographic methods	Non-Cryptographic methods
• large circuit representations (1000s of bits) to compute $f({f A}_1,\ldots,{f A}_n)$	no such restrictions
• not scalable	scalable
${\mbox{ \bullet}}$ finite field restriction for ${\mbox{ A}}_i$	no such restrictions
• hardly handle non-integer valued \mathbf{A}_i (overflow, underflow, round-off, and truncations errors)	no such restrictions HQ implementations (LAPACK,BLAS)
• f_0 and g are often restricted	no hard restrictions
• mechanism influences the algorithm iterations	mechanism is transparent to the solver
${\mbox{\circ}}$ theory for general f_0 and ${\mbox{g}}$ are not promising	there exist a rich and a promising theory, e.g., convex optimization
$ullet$ privacy guaranties for \mathbf{A}_i are broadly studied	to be investigated

Cryptographic Vs Non-Cryptographic Methods

encrypting simplex algorithm iterations...a quote from Toft [Tof09]

- start with **32-bit numbers**
- after ten iterations these have grown to 32 thousand bits
- after twenty iterations they have increased to 32 million
- even small inputs \Rightarrow basic operations \Rightarrow mod. exponentiations with a million bit modulus"

Cryptographic Vs Non-Cryptographic Methods

encrypting simplex algorithm iterations...a quote from Toft [Tof09]

- start with **32-bit numbers**
- after ten iterations these have grown to 32 thousand bits
- after twenty iterations they have increased to 32 million
- even small inputs \Rightarrow basic operations \Rightarrow mod. exponentiations with a million bit modulus"

INEFFICIENT

Conclusions

If you think cryptography is the answer to your problem, then you dont know what your problem is.

> -PETER G. NUMANN Principal Scientist, SRI International Menlo Park, CA, 94025 USA

Conclusions

If you think cryptography is the answer to your problem, then you dont know what your problem is.

> -PETER G. NUMANN Principal Scientist, SRI International Menlo Park, CA, 94025 USA

- cryptography is **inefficient**
- alternatives for cryptographic approaches: less investigated
- we believe that substantial research is required

21 / 22

THANK YOU

On the application of optimization methods for secured multiparty computations

C. Weeraddana*, G. Athanasiou*, M. Jakobsson*, C. Fischione*, and J. S. Baras**

*KTH Royal Institute of Technology, Stockholm, Sweden **University of Maryland, MD, USA {chatw, georgioa, mjakobss, carlofi}@kth.se; baras@umd.edu

CWC 21.05.13

[Du01] W. Du.

A Study of Several Specific Secure Two-Party Computation Problems. PhD thesis, Purdue University, 2001.

- [Tof09] T. Toft. Solving linear programs using multiparty computation. Financ. Crypt. and Data Sec. LNCS, pages 90–107, 2009.
- [Vai09] J. Vaidya.
 Privacy-preserving linear programming.
 In Proc. ACM Symp. on App. Comp., pages 2002–2007, Honolulu, Hawaii, USA, March 2009.

[WAJ⁺13] P. C. Weeraddana, G. Athanasiou, M. Jakobsson, C. Fischione, and J. S. Baras.

Per-se privacy preserving distributed optimization.

arXiv, Cornell University Library, 2013.

[Online]. Available: http://arxiv.org/abs/1210.3283.

[Yao82] A. C. Yao.

Protocols for secure computations.

In Proc. IEEE Symp. Found. of Comp. Science, pages 160–164, Chicago, USA, November 1982.