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Abstract

A musical onset is a location in a piece of music which carries meaningful
information about spectral transitions - i.e., when a musical note is played, the
start of the note is considered as an onset. Musical onset detection is vital in
many applications. Some of which are content delivery, compression and beat
tracking. An accurate onset detection method is required as it is a trivial step
in many applications.

There are several methods designed to detects onsets in music. These methods
can successfully detect musical onsets in genres such as dance, pop and rock
music as the transients are sharp and defined. However, genres such as clas-
sical music, opera music, and some soft pop music do not yield good results
for existing onset detection as they lack sharp transients as opposed to earlier
mentioned genres.

This thesis will propose a method which enables musical onsets to be detected
in music genres where sharp beats are absent. The proposed method retains
several steps which are common to many onset detection methods while intro-
ducing two modifications which are;

• The introduction of the S-transform in place of the short time Fourier
transform (STFT).

• Splitting the s-transform into frequency bands and computing local av-
erages.

The beat may be expressed as an onset envelope which is periodic, provided
that the tempo is constant. By this premise, the s-transform matrix is split into
relatively narrow frequency bands and each band is checked for a an accept-
able onset envelope by means of thresholding the mean through time for each
frequency band. The onset envelope with the highest periodicity is selected as
the onset envelope for the music piece.

Results have shown that beat causing onsets generally occur in a single fre-
quency band. For genres where sharp transients are absent, onsets may be
gracefully localized through the proposed method. Results have verified that
musical onsets present in static frequency bands can be successfully identified
for genres such as classical, opera and instrumental music.



ii

Acknowledgements

My gratitude to the Lord above.

My sincerest gratitude to my parents, the two people that fed me, clothed me,
looked after me, gave me a good education, and paved my path towards un-
dergraduate and postgraduate studies.

I would like to thank my supervisor, Dr. Chathuranga Weeraddana for guid-
ing and steering me towards the completion of my masters research, for the
knowledge bestowed, and for the analytical thinking ability I have gathered
through the work done.

I would like to thank my sister, Dr. Nishala Silva, for the guidance and support
given to me in all aspects of my life.

My sincerest thanks to Mr. Mavidu Iddagoda, who gave me an idea which led
me to work on this research.



iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6
2.1 Relative Difference of Filter Banks . . . . . . . . . . . . . . . . . 6
2.2 Frequency Analysis and Envelope Extraction . . . . . . . . . . . 7
2.3 Energy Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Spectral Energy Flux . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Onset Strength Envelope . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Median Onset Aggregation . . . . . . . . . . . . . . . . . . . . . 11
2.7 Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Critical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8.1 Autocorrelation based Tempo Deduction . . . . . . . . . 13

3 Technical Background 15
3.1 Envelope Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Decimation-in-Time . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Decimation-in-Frequency . . . . . . . . . . . . . . . . . . 19

3.4 Short Time Fourier Transform . . . . . . . . . . . . . . . . . . . . 19
3.5 S-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 Continuous S-transform . . . . . . . . . . . . . . . . . . . 22
3.5.2 Discrete S-transform . . . . . . . . . . . . . . . . . . . . . 23

3.6 Comparison between STFT and S-Transform . . . . . . . . . . . 23

4 Musical Theory 26
4.1 Musical Terminology Definitions . . . . . . . . . . . . . . . . . . 26
4.2 Frequency Ranges of Musical Instruments . . . . . . . . . . . . . 27



iv

5 Methodology 31
5.1 Proposed method - overview . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Read Audio/ Single Channel Conversion . . . . . . . . . 31
5.1.2 Decimation . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.3 Frequency Ranges . . . . . . . . . . . . . . . . . . . . . . 34
5.1.4 DFT Computation/ S-Transform . . . . . . . . . . . . . . 34
5.1.5 Band Splitting . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.6 Mean Calculation . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.7 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Application of the S-Transform to Musical Onset Detection . . . 36

6 Results 37
6.1 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.1 Spectral Energy Flux method . . . . . . . . . . . . . . . . 39
6.2.2 Onset Strength Envelope method . . . . . . . . . . . . . . 40
6.2.3 Median Onset Aggregation method . . . . . . . . . . . . 40
6.2.4 Energy Flux method . . . . . . . . . . . . . . . . . . . . . 42

6.3 S-Transform - Mean, Median and Sum operators through Com-
plete Frequency Bands . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4 Bandwise Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.5 Comparison with existing methods . . . . . . . . . . . . . . . . . 48

7 Conclusions and Future Work 50
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Appendix A 52
8.1 Bandwise Splitting of S-Transform matrix . . . . . . . . . . . . . 52

8.1.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.1.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.1.4 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.5 Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.1.6 Example 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.1.7 Example 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography 60



v

List of Figures

1.1 Attack, Transient, Onset, and Decay in the case of an isolated
musical note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 The detected onsets as a function of their time [30] . . . . . . . . 7
2.2 STFT spectrogram (top), Mel-spectrogram (middle, and the on-

set strength envelope (bottom) [20] . . . . . . . . . . . . . . . . . 10

3.1 Audio signal segment (top), its rectified version (upper middle),
Hanning window of length 20 ms (lower middle), and the con-
volution output (bottom) . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Signal y(n′) and its magnitude spectrum . . . . . . . . . . . . . . 17
3.3 Three stages in the computation of an N = 8-point DFT . . . . . 18
3.4 Gaussian window(top), and Hanning window (bottom) . . . . . 20
3.5 Sinusoid consisting of five frequencies . . . . . . . . . . . . . . . 21
3.6 STFT of the signal with varying window sizes. . . . . . . . . . . 21
3.7 Synthetic signal consisting of twp chirps and two high frequency

bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 STFT matrix for for the signal represented in figure 3.7 . . . . . 25
3.9 S-transform matrix for for the signal represented in figure 3.7 . . 25

4.1 A popular rock song, of which the visibly obvious beats have
been created using the kick-drum and bass guitar . . . . . . . . 28

4.2 Standard 88-key piano keyboard with numbered octaves . . . . 29

5.1 Flowchart of the proposed onset detection system . . . . . . . . 32
5.2 Left and right channels of a stereo song excerpt, plotted separately 32

6.1 A comparison of the waveforms of a dance music piece (top),
and a classical piece (bottom) . . . . . . . . . . . . . . . . . . . . 38

6.2 A flowchart of the algorithm presented in [1] . . . . . . . . . . . 39
6.3 A comparison of results for [1] . . . . . . . . . . . . . . . . . . . 40
6.4 A flowchart of the algorithm presented in [20] . . . . . . . . . . 41
6.5 A comparison of results for [20] . . . . . . . . . . . . . . . . . . . 41
6.6 A flowchart of the algorithm presented in [39] . . . . . . . . . . 42
6.7 A comparison of results for [39] . . . . . . . . . . . . . . . . . . . 43
6.8 A flowchart of the algorithm presented in [34] . . . . . . . . . . 43



vi

6.9 A flowchart of the algorithm presented in [34] . . . . . . . . . . 44
6.10 Difference between the summation, median, and mean through

each time bin in the s-transform matrix . . . . . . . . . . . . . . 45
6.11 Example 2 - the mean operator is applied to each time bin in the

s-transform matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.12 Example 2 - s-transform matrix is split into frequency bands of

100Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.13 Example 4 - s-transform matrix is split into frequency bands of

100Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.14 Example 1 - A comparison of existing methods and the pro-

posed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.15 Example 2 - A comparison of existing methods and the pro-

posed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.1 Example 1, split into 20 frequency bands of 100Hz . . . . . . . . 52
8.2 Example 1, split into 20 frequency bands of 100Hz, and thresh-

olded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3 Example 2, split into 20 frequency bands of 100Hz . . . . . . . . 53
8.4 Example 2, split into 20 frequency bands of 100Hz, and thresh-

olded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.5 Example 3, split into 20 frequency bands of 100Hz . . . . . . . . 54
8.6 Example 3, split into 20 frequency bands of 100Hz, and thresh-

olded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.7 Example 4, split into 20 frequency bands of 100Hz . . . . . . . . 55
8.8 Example 4, split into 20 frequency bands of 100Hz, and thresh-

olded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.9 Example 5, split into 20 frequency bands of 100Hz . . . . . . . . 56
8.10 Example 5, split into 20 frequency bands of 100Hz, and thresh-

olded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.11 Example 6, split into 20 frequency bands of 100Hz . . . . . . . . 57
8.12 Example 6, split into 20 frequency bands of 100Hz, and thresh-

olded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.13 Example 7, split into 20 frequency bands of 100Hz . . . . . . . . 58
8.14 Example 7, split into 20 frequency bands of 100Hz, and thresh-

olded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



vii

List of Tables

2.1 Comparison of several onset detection methods . . . . . . . . . 13

4.1 Acoustical categorization of frequencies . . . . . . . . . . . . . . 29
4.2 Frequencies of musical instrument notes . . . . . . . . . . . . . . 30

6.1 Test dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



“Why is it that when one man builds a wall,
the next man immediately needs to know what’s on the other side?”

Tyrion Lannister



1

1 Introduction

“The act of tapping one’s foot or nodding one’s head in time to music is an
intuitive and often unconscious human response” [14]. The process referred to
as beat tracking, is the computational equivalent to this human behavior. Beat
tracking is performed to recover a sequence of beat causing onsets which are
consistent with a human tapping his foot.

Even the simplest piece of music rely on transitions as musical timbre and
tone color evolves. It can be said that without transitions, there cannot be any
musical meaning [6]. These transitions are often due to changing notes played
though a musical instrument or sung vocally.

The automatic detection of transitions in a piece of music are essential for many
modern applications. Some of these applications include;

• Content delivery

• Compression

• Indexing and retrieval 1[6].

These detections have given rise to many audio editing algorithms and digital
effects (time stretching, pitch shifting, equalization etc.).

A musical onset is a representation of a musical note or other sound. As each
beat will fall on an Onset, musical onset Detection is an integral and primary
segment of any beat tracking system. To continue this thesis, the concept of a
musical onset needs to be defined. There are three main terms - musical onset,
transient, and attack, which are similar in nature and may be used interchange-
ably [6].

Attack, Transient, Onset

A clear distinction must be made between the concepts of a Transient, Onset
and Attack. These are very similar and may be interchangeably used with the
right context. That is the term Onset or transient may be used to define the

1Refer 4.1 for definitions of musical terms
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FIGURE 1.1: Attack, Transient, Onset, and Decay in the case of an
isolated musical note

beginning of a musical note. Figure 1.1 shows these notions in the case of an
isolated musical note.

• An attack can be defined as the time interval through which the ampli-
tude envelope increases.

• A transient may be defined as the duration through which the signal un-
dergoes a rapid and unpredictable evolution. The transient usually be-
gins with an excitation (a hammer strike on a piano or xylophone), and
continues till it is damped, which leads to the decaying of resonant fre-
quencies [6].

• An onset of the note is an single instant used to represent the transient.
The most common representation of a musical onset is at the start of the
transient.

1.1 Motivation

The ability to detect musical onsets accurately, is a fundamental criterion in any
beat tracking algorithm. As all beats lie on onset locations, properly identified
musical onsets will lead to an accurate beat tracking and estimation.
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A limitation to many existing onset detection algorithms is the inability to de-
tect musical onsets in some genres of music where there are no clearly dis-
tinguishable transients. Many existing algorithms fail to identify opera and
classical music genres while having excellent performances in identifying pop,
rock, and dance music where prominent kick drum driven beats are present
[30][13][14][40].

Musicians, music producers, and music production softwares usually have to
deal with a myriad of genres, and cannot restrict themselves to a few where
onset detection methods do work. Hence it a critical to develop a method to
identify musical onsets accurately for music of any genre.

1.2 Challenges

Many of the existing methods excel in identifying musical onsets and sub-
sequent beat locations in music genres such as pop, rock, and dance, where
clear and abrupt transients are present, but the results may lose its accuracy
when the music deviates away from standard kick-drum driven music. Some
very common examples for this phenomenon are classical and ensemble mu-
sic, opera music, and legato playing [30][13][14][40].

Even the most simple piece of music can be extremely complex in structure
due to the fact that there are multiple musical instruments and vocalizations
present. These instrumentations and vocalizations result in strong amplitude
modulations in the resultant piece of music which may mask off beat causing
onsets, rendering the detection functions inaccurate.

In most studio and live applications it is desirable to identify the tempo of a
song. A recording engineer may need the tempo to add certain effects, Musi-
cians will need the tempo to play along or to overdub and DJ’s will need the
tempo to beat-match and perform seamless transitions between songs.

In the case of a real scenario: If a DJ is to beat match two songs, and the tempo
of one song is not identified accurately, the resultant transition between the
songs will be jagged and unpleasant. In such cases, an accurate beat tracking
is required and hence, an accurate musical Onset detection is necessary.

The general cases where a musical onset detection functions may fail may be
broadly categorized into two;

• When the rhythm of the music is less pronounced,

• During rapid tempo changes [30].
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1.3 Objectives and Contributions

As discussed in the previous section, there are two main cases where musical
onset detection methods may fail to render accurate results. the objective of
the work presented through the remainder of this thesis aims to develop an
algorithm that is able to identify beat locations in music when the rhythm of
the music is less pronounced. This is mainly due to string amplitude modula-
tions in the signal and is very common in genres such as classical music, opera
music, and soft pop music [30].

The objectives and contributions made by this thesis are as follows;

• To study the current musical onset detection methods and their accuracy,
with a selection of songs of a broad range of genres.

• To introduce a novel method for musical onset detection where a number
of significant disadvantages of currently existing methods are overcome.

• To show a comparison between existing methods, the proposed method,
and the improvement in detected musical onsets for some songs.

• To explore various methods of thresholding applied to detected musical
onsets to identify accurate beat locations.

1.4 Thesis Outline

The work presented by this thesis presents a new musical onset detection
method, which introduces two modifications while preserving several steps
common to most onset detection methods. chapter 2 discusses some of the
current work done on musical onset detection along with their strengths and
possible shortcomings. Chapter 3 presents a brief description on the digital
signal processing (DSP) techniques that are used in the task of onset detection.

Some musical theory is required to further understand onsets and their impor-
tance from a musical point of view - i.e., the tempo of a piece is directly related
to its beat causing onsets. A brief explanation in musical theory which is appli-
cable for the task of onset detection, and definitions for musical terminologies
used in this thesis is presented in chapter 4.

Chapters 5 and 6 present the proposed method musical onset detection method
introduced in this thesis. Chapter 5, presents the methodology, whereas chap-
ter 6 presents the results, along with a comparison of the proposed method
with existing methods.
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Chapter 8 shows the results of the proposed method. Plots for the s-transform
split into frequency bands, and the thresholded frequency band signals are
plotted in section 8.
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2 Literature Review

This chapter will serve as a review of the recent work done on musical onset
detection. Among various methods intended for the task of detecting musical
onsets, some rely on temporal features of the audio signal [30], while others
utilize its time-spectral features [14][20][13]. Most of the onset detection meth-
ods are a pre-processing step in beat tracking systems. In such cases, only the
onset detection stage is discussed.

This chapter discusses several popular onset detection methods. The first to
be discussed are the temporal analysis methods, followed by a discussion of
the spectral analysis methods. Each author has used various nomenclatures
for their respective methods and those names have been used as the title for
the description of the said method. This chapter will follow the same notations
and nomenclatures as the original reference material for clarity and to better
convey the point made by the original authors.

2.1 Relative Difference of Filter Banks

Klapuri suggests a method where a set of first order difference functions are
calculated following the filtration through a filterbank.

The filterbank consists of 21 filters, which covers the frequencies from 44Hz
to 18kHz. The filters consist of three one ocatave band-pass filters and eigh-
teen third-octave band-pass filters. The output of each filter is decimated by
a factor of 180 and their amplitude envelopes are calculated by a convolution
between the band limited signal and a 100ms half-Hanning window. The win-
dow masks rapid modulations while preserving sudden changes, similar to
the energy integration of the human auditory system [43][50].

The first order difference function of each amplitude envelope A(t) is calcu-
lated which is divided by the amplitude envelope function to obtain a first
order relative difference function W(t) (equation 2.1). It is found that the relative
difference function thus calculated is equivalent to the differentiation of the
logarithm of the amplitude envelope.



Chapter 2. Literature Review 7

10

15

20

25

30

35

40

45

50
loudness (dB)

45
40
35
30
25
20

FIGURE 2.1: The detected onsets as a function of their time [30]

W(t) =
d
dt

log((A(t))). (2.1)

The intensity of each onset component is calculated as the maxima of W(t).
Components which are less than 50 ms apart are dropped and the resultant
onset components of each filterbank are summed. Figure 2.1 shows a set of
detected onsets. The genuine onsets can be easily seperated using a global
threshold.

Klapuri explains that the results of the system for symphony orchestra perfor-
mances have been very poor. It is stated that strong amplitude modulation in
middle frequencies may confuse the system and a primary shortcoming in this
method is it’s inability to deal with strong amplitude modulations present in
classical music and certain instrumental sounds [30].

2.2 Frequency Analysis and Envelope Extraction

Scheirer explains in his paper that envelopes extracted from a short number of
broad frequency channels are sufficient to analyze a musical signal. The mu-
sical onset detection stage of the algorithm as proposed by Scheirer employs a
filterbank based detection.

The fiterbank consists of six filters. Each having a sharp cutoff frequency and
covering roughly one octave. The lowest is a low pass filter with a cutoff at
200Hz. The next four filters are band pass filters, with cutoffs at 200Hz −
400Hz, 400Hz − 800Hz, 800Hz − 1600Hz and 1600Hz − 3200Hz. The high-
est is a high pass filter, with a cutoff at 3200Hz. Each filter is implemented
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using a sixth order elliptic filter with 3dB of ripple in the passband and 40dB
of rejection in the stopband.

The envelope is extracted from each band of the filtered signal and the first
order difference is calculated along the time axis. The difference signal is ex-
amined for periodic modulation. The derivative of an envelope function serves
as a type of onset filter [43]. The derivative functions of the envelope signals
are passed on to later stages of the algorithm.

2.3 Energy Flux

Beats tend to occur at salient features of an audio signal such as onsets, note
changes, and percussion hits. Laroche explains a method to locate fast vari-
ations in the frequency domain which correspond to the above mentioned
salient features. This is preferred over the temporal energy as onsets may be
hidden by continuous tones of higher amplitude.

A time-frequency representation of the audio signal is obtained using the STFT.
Laroche defines the STFT at the normalized frequency f and frame i, when the
signal is x(n), the frame time in seconds is ti, the sampling frequency is Fs, the
size of the analysis window in samples is N and the analysis window is h(n)
as;

X( f , ti) =
N−1

∑
n=0

h(n)x(n + Fsti)e2jπ f n. (2.2)

The window being used is of width 10ms and there is zero overlap between
two successive windows. A compression function G(x) is applied to each
FFT bin, to avoid high frequency components being masked off by higher am-
plitude low frequency components. Laroche gives two possible compression
functions G(x);

G(x) = x
1
2 , and (2.3)

G(x) = arcsin x. (2.4)

A first order difference is calculated for all frequency bins and the sum of all
first order difference functions is calculated to obtain ˆE(i), which is given by
equation 2.5. The representation when ˆE(i) is half wave rectified exhibits sharp
maxima at onset locations and is better suited for the analysis of onset compo-
nents. Ê(i) is half-wave rectified to obtain a positive energy flux E(i), which is
shown by equation 2.6.
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Ê(i) =
fmax

∑
f= fmin

G(|X( f , ti)|)− G(|X( f , ti−1)|). (2.5)

E(i) =

{
Ê(i) if Ê(i) > 0,
0 otherwise.

(2.6)

The energy flux E, represents the onsets of the signal. This signal is used int
the beat tracking section of the algorithm to identify the tempo.

The energy flux signal presented by Laroche is said to contain just enough infor-
mation to detect the beat, but not sufficient for applications requiring a more
comprehensive analysis. The energy flux based onset detection yields good re-
sults for rhythmic contemporary music such as rock, pop, techno, and dance,
but it is less successful when the rhythm is less pronounced. The authors claim
that the energy flux based tempo analysis system can be applied in real time
with limited access to the future of the signal [34].

2.4 Spectral Energy Flux

As onsets can be easily masked by continuous tones of higher amplitude [34],
there is a higher likelihood of detecting them after the seperation into fre-
quency channels [15][34][35][24][30][32]. Alonso et al. proposes to follow a fre-
quency domain approach as it has been proven to outperform its time-domain
counterpart.

The input audio signal is analyzed using a Short Time Fourier Transform (STFT),
which leads to;

X̄( f , m) =
N−1

∑
n=0

w(n)x(n + mM)e−j2π f n, (2.7)

where x(n) denotes the audio signal, w(n) is the analysis window, M is the
advancement between successive windows, m is the frame index, and f is the
frequency.

Alonso defines the spectral energy flux E( f , k), as an approximation to the deriva-
tive of the frequency content with respect to time, where G( f , m) is obtained
via low pass filtering with a half-Hanning window, which is followed by a
logarithmic compression function [32].

E( f , k) = ∑
m

h(m− k)G( f , m). (2.8)
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FIGURE 2.2: STFT spectrogram (top), Mel-spectrogram (middle,
and the onset strength envelope (bottom) [20]

Alonso et al. proposes h(m) to be a FIR filter differentiator designed by a
Remez optimization procedure. This approach highly improves the extrac-
tion of meaningful features when compared with the first order difference
[32][34][35].

The positive contributions of the spectral energy flux along the time axis are
summed which produces a temporal waveform having sharp maxima at tran-
sients and note onsets. The true beats are filtered using a dynamic threshold -
all peaks above the threshold are preserved, while those which are lower are
discarded [1].

The method presented by Alonso et al. claims to have a relatively small com-
putational strain on the processor. The method fails in a real time implementa-
tion as it would need access to future signal components for a successful onset
detection. The results presented in the paper shows that the method shows a
good performance for music with straightforward rhythm, but has difficulty
in detecting onsets in genres such as classical music.

2.5 Onset Strength Envelope

The onset envelope is calculated using a similar method as many other models
[24][30][29]. The magnitude STFT of the sound file is calculated using a win-
dow size of 32ms, and a hop size of 4ms. This is converted to an approximate
auditory representation by mapping to 40 Mel bands [19][46]. The auditory
frequency scale is used to balance the perceptual importance of each frequency
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band. The Mel spectrogram is then converted to dB, and the first order differ-
entiation is calculated along time in each frequency band. Each different equa-
tion is then half-wafe rectified. The positive differences are summed across all
frequency bands to obtain the onset strength envelope [20].

Figure 2.2 shows a comparison between the STFT and the Mel scaled spec-
trogram, as well as the onset strength envelope, which may be obtained by
summing each onset strength difference function across each frequency band.

The method shares the same limitations as the others where onset locations in
music genres such as classical music, opera music, and soft pop music may not
be identified correctly whereas songs with distinct kick-drum driven beats are
identified accurately.

2.6 Median Onset Aggregation

The method presented by McFee in his paper is a modification of the work
done by Ellis [20]. The method proposed by Ellis can be broken into 3 stages;

1. Onset strength envelope w(t) is computed.

2. Tempo estimation by peak-picking.

3. Selecting beats consistent with the estimated tempo.

The modification as proposed by McFee in [39], is to preserve steps 2 and 3 as
they are, and to introduce a median onset aggregation in place of the summation
across frequencies in step 1.

The method proposed by Ellis [20] uses the sum across thresholded log-magnitude
difference frequency bands where S denotes the Mel scaled magnitude spec-
trogram;

ws(t) = ∑
f

max
(
0, log S f ,t − log S f ,t−1

)
. (2.9)

The drawback in this method as pointed out by McFee is that w(s) may re-
spond to either a large fluctuation confined to a single frequency band, or
many small fluctuations spread across multiple frequency bands. The latter
case may arise from percussive events or multiple synchronized onset events,
which coincide to an onset location. But the former case may arise only if a sin-
gle source plays out of sync with other sources. To better capture synchronous
onset events, McFee proposes a median operator;

ws(t) = median
f

max
(
0, log S f ,t − log S f ,t−1

)
. (2.10)
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The paper explains that the median onset aggregation method does not yield
improvements for musical pieces consisting of instrumental sounds. This is
true for other cases where the amplitude modulations are strong and can mask
off musical onset causing components.

2.7 Frequency Analysis

Goto and Muraoka proposes a frequency analysis to obtain onset locations in
[24] where the full frequency band is split into several frequency ranges, and
an onset-time vector is calculated, where each dimension of the vector corre-
spond to a different frequency range. This representation enables for the easy
consideration of onset times in all frequency ranges simultaniously.

The frequency spectrum for each frequency range is calculated using a fast
Fourier transform (FFT) using a Hanning window. The FFT is calculated with
a window size of 1024 samples, and a hop size of 256 samples (75% overlap).

The system proposed by Goto utilizes seven frequency bands for which the
onset components are found. The frequency bands are in the ranges 0− 125Hz,
125Hz− 250Hz, 250Hz− 500Hz, 500Hz− 1kHz, 1kHz− 2kHz, 2kHz− 6kHz
and 6kHz− 11kHz.

Each onset time is found by peak picking D(t) along the time axis, where
d( f , t) is the degree of onset at frequency f and time t. Limiting the range
of frequencies for the summation of D(t) makes it possible to find onset times
in different frequency ranges.

D(t) = ∑
f

d(t, f ). (2.11)

The onset times for each frequency range is used to build a vector consisting
on onset times for all frequency ranges. This vector is passed on to later stages
of the algorithm [24].

The paper by Goto and Muraoka concludes that it is difficult to track music
without drum sounds, as they have fewer sounds which fall on the beat. The
method can be applied in real time and has been used to display a computer
graphics dancer whose motion changes with musical beats. A significant dis-
advange shared by many onset detection applications is the genre-specific per-
formance - i.e., the performance is satisfactory for music genres with strong
beat sounds, while having significantly lesser performance for genres lacking
strong sounds at beat locations.
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TABLE 2.1: Comparison of several onset detection methods

Music
Piece

Manually
detected
tempo

Onset
Strength
Envelope
[20]

Spectral
Energy
Flux [1]

Energy
Flux [34]

Median
Onset Ag-
gregation
[39]

example 1 129 129.3 123.3 129 129.3
example 2 120 123.3 136.1 109.7 131.2
example 3 95 127.3 126 126.8 130.2
example 4 132 131.5 129.1 129.8 130.4
example 5 126 126 126.6 126.5 126
example 6 130 127.1 128.9 127.3 127.1
example 7 127 126 129.3 126.5 126
example 8 114 121.2 97.5 98.7 123.2

2.8 Critical Analysis

A common issue faced by many of the methods is the inability to detect beats
in music where onsets may be masked by higher amplitude components which
may reside in neighboring frequencies. For an example; if a beat causing onset
resides at a frequency f and a signal component which is of a higher amplitude
resides at frequency ∆ f where ∆ is small, it will cause the onset component at
f to be masked off by that at ∆ f .

To perform a comparison between the methods, a tempo approximation was
implemented using the said methods. The onset detection mechanism for each
algorithm was used to detect onsets, and an autocorrelation based tempo de-
duction was performed as presented in [20] to detect the tempo value in beats
per minute (bpm).

2.8.1 Autocorrelation based Tempo Deduction

The onset envelope is extracted by each method and it it correlated with itself
until a duration of 4s. The autocorrelation yields the locations for which the
onset envelope is most similar to a shifted version ot itself. As beat causing
onsets are periodic, this approximation yields the best beat locations.

Knowing the sampling frequency and the number of samples in the signal,
the time interval where successful beat correlations occur can be found. This
time interval is used to deduce the tempo value in bpm. Table 2.1 shows the
bpm values derived for the test dataset defined in 6.1 using several methods
explained prior in this chapter.
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It can be clearly seen that the tempo values for examples 2, 3 and 8, which are
classical and opera music pieces have not been successfully identified using
any of the said methods. The performance of methods [20], [1], [34] and [39]
are satisfactory for the other music pieces in the dataset. These music are of
dance, rock and pop music genres.
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3 Technical Background

This chapter will establish several technical elements and theories in the digital
signal processing realm, which have been used in the simulation of existing
methods and in the proposed method. A separate chapter 4 is dedicated to
technical elements and theories related to music.

There have been attempts to identify locations of musical onset both in the
temporal and the spectral domain. The temporal methods rely on the envelope
of the audio signal as a whole, or on a band-limited segment of the signal.

3.1 Envelope Extraction

Klapuri [30] and Scheirer [43] has proposed methods to analyze the audio sig-
nal in the time domain itself. Temporal onset detection methods work by find-
ing the envelope of an input audio wave. The envelope is a smooth curve
which outlines the extremities of a given wave [8]. Both Klapuri and Scheirer
has obtained the amplitude envelope via convolution with a Hanning window.
Figure 3.1 shows a section of an audio signal (top), its rectified version (upper
middle), a Hanning window (lower middle), and the result of the convolution
of the rectified audio signal and the Hanning window.

The envelope thus obtained is used to detect onset components, which are
represented by peaks in the envelope. In the case of musical genres with loud
beats, the peaks in the audio signal envelope directly correspond to its beat
locations.

3.2 Discrete Fourier Transform

The use of computers has replaced the continuum of values in a signal by a
discrete set [23]. When the signal being analyzed is discrete, the continuous
Fourier transform cannot be applied. Hence the discrete Fourier Transform
(DFT) has been introduced which replaces the integral operation in the contin-
uous Fourier transform with a summation [23].
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FIGURE 3.1: Audio signal segment (top), its rectified version (up-
per middle), Hanning window of length 20 ms (lower middle),

and the convolution output (bottom)

Consider a discrete series x(n). The discrete Fourier transform for x(n) can be
written as;

X(k) =
N−1

∑
n=0

x(n)e
−2π jnk

N , (3.1)

where 0 ≤ k ≤ N − 1, and the DFT of x(n) is calculated in the interval [0, N −
1]. X(k) is complex in nature. The complex norm of X(k), |X(k)|, is called the
discrete magnitude spectrum and the complex phase, arg(X(k)), is called the
discrete phase spectrum of x(n) for 0 ≤ k ≤ N.

Consider equation 3.2, a signal consisting of a summation of five sinusoids;

y(n) = cos 2πn + cos 4πn + cos 6πn + cos 8πn + cos 10πn. (3.2)

Figure 3.2 shows y(n) plotted as a function of time (top), and its magnitude
spectrum (bottom) obtained using the DFT. The five frequency components
which contribute to equation 3.2 can be easily observed using the plotted DFT.



Chapter 3. Technical Background 17

0 50 100 150 200 250 300 350 400 450 500

samples

-5

0

5

am
pl

itu
de

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

normalized frequency x 

0

100

200

300

D
F

T
 v

al
ue

s

FIGURE 3.2: Signal y(n′) and its magnitude spectrum

3.3 Fast Fourier Transform

Consider the computation of X(k) in equation 3.1. To calculate X(k) in the
interval 0 ≤ k ≤ N − 1, it would require N complex multiplications and N −
1 sums. It would require N2 complex multiplications and N2 − N complex
summations to compute all N of X(k).

Complex arithmetic is computed as floating point operations on pairs of float-
ing point values in digital computers. Hence, each complex multiplication
would require four floating point multiplications and four floating point addi-
tions; whereas each addition will require a further two floating point additions.
The total floating point computation count for a N-point DFT would be 4N2

multiplications and 2(N2 − N) + 2N2 additions.

The number of floating point computations becomes a serious factor affecting
the speed of the DFT as N increases. As the number of said computations are
proportional to N2, it can be deemed that the DFT is an order-N2, or O(N2)
operation [33].

The fast Fourier transform (FFT) is an optimized method of computing the
DFT with greater speed. The sped up performance has allowed it to be used
in most beat tracking and onset detection methods for the computation of the
DFT.
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FIGURE 3.3: Three stages in the computation of an N = 8-point
DFT

The FFT will do a rapid computation of the DFT by factorizing the DFT matrix
into a product of sparse factors [51]. Hence the FFT will reduce the complexity
of computing the DFT from O(N2), which may arise if the DFT is applied by
itself, to O(N log N), where N is the data size.

There are two fundamental methods of computing the FFT, which will be
briefly discussed.

• Decimation-in-time.

• Decimation-in-frequency [33].

3.3.1 Decimation-in-Time

Decimation-in-time FFT algorithms will reduce the DFT into a succession of
smaller DFT analysis equations. The N-point DFT will resolve into two N

2 -
point equations, each of which resolves into two N

4 -point DFT’s and so on.
Figure 3.3 shows the first three stages of a decimation-in-time operation for a
8-point FFT [33].
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3.3.2 Decimation-in-Frequency

Figure 3.3 shows a decimation-in-time FFT, where x(n) is pre-ordered to obtain
X(k) in the correct order. When computing a decimation-in-frequency, x(k)
remains in the correct order but the FFT X(k) appears in an incorrect order.

This disorder in the indices is predictable. If an 8-point FFT is considered and
the indices are expressed using 3 bits, the indices in the correct order are 0, 1,
2, 3, 4, 5, ... and if a 3-bit binary representation is used, the indices are 000, 001,
010, 011, 100, 011,...

The disordered bits are 0, 4, 2, 6, 1, 5, ... and its 3-bit binary representation is
000, 100, 010, 110, 001, 101, ... It can be observed that the disordered sequence
can be obtained by string-flipping the bits of the ordered sequence [4].

3.4 Short Time Fourier Transform

A signal which has varying frequency components with time (figure 3.5) can-
not be successfully recovered with the DFT as the time where each frequency
component is present cannot be identified. This is a primary requirement in
analyzing audio files. Hence a representation is needed to identify varying
frequencies in a signal with relation to their time.

The short time Fourier transform (STFT) is a time-frequency representation
of a distribution. The function x(t) is multiplied by a window function g(t),
which is nonzero for a short duration. The Fourier transform of the windowed
segment of the signal is calculated as the window slides along the time axis.
The STFT for a continuous distribution may be expressed as follows;

STFTx(t′, f ) =
∫ ∞

−∞
x(t)g(t− t′)e−j2π f tdt. (3.3)

Where x(t) is a function of time t, while its short time Fourier transform is a
function of both time t′, and frequency f .

The transformation x(t) → STFTx(t′, f ) is linear and depends on the window
function g(t− t′) [25]. The most commonly used window functions are Han-
ning or Gaussian windows (refer figure 3.4) as they tend to taper toward the
edges, the centered values of the windowed signal have a greater emphasis on
the DFT.

The STFT for a discrete signal x(n) can be written as follows, where the integral
from equation 3.3 is replaced by a sum;
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FIGURE 3.4: Gaussian window(top), and Hanning window (bot-
tom)

STFTx(n′, f ) =
∞

∑
−∞

x(n)g(n− n′)e−j2π f n. (3.4)

A compound sinusoid is used to evaluate the STFT effect variation with the
window size. The sinusoid x(n) is created where 1 ≤ n ≤ 1000. Each interval
contains only one frequency(n(1 : 200)− 10Hz, n(201 : 400)− 100Hz, n(401 :
600)− 200Hz, n(601 : 800)− 300Hz, n(801 : 1000)− 400Hz). Figure 3.5 shows
the compound waveform thus created;

Figure 3.6 shows the STFT plots for the waveform shown in figure 3.5 with
varying window sizes. The STFT is plotted with the number of samples in the
x-axis, and the frequency in Hz in the y-axis. It can clearly be seen that shorter
window lengths lead to poorer frequency resolution. When the window size is
larger, the time localization will not be as accurate as when a smaller window
is used, but there will be a better frequency resolution.
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FIGURE 3.5: Sinusoid consisting of five frequencies
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FIGURE 3.6: STFT of the signal with varying window sizes.
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3.5 S-Transform

“The S transform is variable window of short time Fourier transform (STFT)
or an extension of wavelet transform” [53]

A fundamental limitation is the short time Fourier transform (STFT) is the
analysis window of fixed width. This static window will cause a fixed time-
frequency resolution for all spectral components. An improperly applied win-
dowing function may render the STFT information useless for interpreting the
evolution of the signal through time.

A narrow window will result in a more precise time frame where frequencies
of interest occur. But for discrete data, the number of samples within the win-
dow may not be sufficient enough to compute the discrete signal frequencies
if the window width is too narrow [33][48][53][47].

Stockwell et al. introduces the S-transform, as an extension of the continuous
wavelet transform (CWT). The S-transform is based on a moving and scal-
able Gaussian window and provides a frequency-dependent resolution while
maintaining a direct relationship with the Fourier spectrum [47].

3.5.1 Continuous S-transform

The STFT for a continuous signal has been defined in section 3.4, where t′

and f correspond to the time of spectral localization and Fourier frequency
respectively, and g(t) denotes the window function.

STFTx(t′, f ) =
∫ ∞

−∞
x(t)g(t− t′)e−j2π f tdt. (3.3)

The S-transform is derived from equation 3.3 by replacing the window func-
tion g(t) with a Gaussian function;

G(t) =
| f |√
2π

e−
t2 f 2

2 . (3.5)

By combining equations 3.3 and 3.5, the continuous S-transform may be de-
rived as;

STFTx(t′, f ) =
∫ ∞

−∞
x(t)

| f |√
2π

e−
t2 f 2

2 e−j2π f tdt. (3.6)
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The S-transform is a special case of the STFT, where the window is a frequency
dependent Gaussian function. If the window G(t) is wider in time domain,
the resultant S-transform will produce a better frequency resolution for lower
frequencies. Also, when in the case of G(t) is narrower, it will provide a better
time resolution for higher frequencies [53].

The S transform may be expressed as operations on the Fourier spectrum H( f )
of h(t), where f 6= 0;

S(t′, f ) =
∫ ∞

−∞
H(τ + f )e

−2π2τ2

f 2 ej2πτtdτ. (3.7)

3.5.2 Discrete S-transform

Given a discrete time series h[kT], where k = 0, 1, ..., N − 1. The discrete
Fourier transform may be expressed as;

H
[ n

NT

]
=

1
N

N−1

∑
k=0

h[kT]e
j2πnk

N , (3.8)

where n = 0, 1, ..., N − 1. Using equations 3.7 and 3.8, the S-transform of a
discrete time series h[bT] may be expressed as ( f → n

NT and t′ → kT) [47];

S
[
kT,

n
NT

]
=

N−1

∑
m=0

H
[

m + n
NT

]
e−

2π2m2

n2 e
j2πmk

N . (3.9)

3.6 Comparison between STFT and S-Transform

As explained earlier, the S-transform allows for the tracking of changes in am-
plitude and frequency with better precision than STFT as the STFT shows a
sharp localization of basic components and improves tracking dynamism of
the transient components [36]. This is due to the inverse frequency depen-
dence of the Gaussian window as opposed to the fixed width window used in
the STFT [47].

Figures 3.8 and 3.8 shows a time frequency representation of a signal using the
STFT and the S-transform. The signal, shown by figure 3.7 is synthesized so as
it contains two chirps and two high frequency bursts and is expressed as;
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FIGURE 3.7: Synthetic signal consisting of twp chirps and two
high frequency bursts

h(1 : 300) = cos(2π(10 +
t
7
) ∗ t

256
) + cos(2π(

256
2.8
− t

6.0
) ∗ t

256
),

h(114 : 122) = h(114 : 122) + cos(2πt0.42),
h(114 : 122) = h(114 : 122) + cos(2πt0.42).

(3.10)

It can be observed that in figure 3.8, which is the STFT matrix using a Gaussian
window, both the chirps are detected, but the two high frequency bursts have
not been detected. But the s-transform, which is shown by figure 3.9 shows
that the two chirps as well as the two high frequency bursts have been de-
tected. Hence the proposed method replaces the STFT with the s-transform for
better frequency resolution.
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FIGURE 3.8: STFT matrix for for the signal represented in figure
3.7

FIGURE 3.9: S-transform matrix for for the signal represented in
figure 3.7
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4 Musical Theory

4.1 Musical Terminology Definitions

Several musical terminologies used in this thesis are defined as follows;

• Timbre: The characteristic quality of a sound - the attribute that allows a
listener to judge that two nonidentical sounds, having the same loudness
and pitch, are dissimilar [2].

• Tone Color: A characteristic which allows for sound of two instruments
to be different from each other. Terms such as warm, bright, dark or
buzzy may be used to describe tone color [11].

• Beat: The basic unit of time of the mensural level - the musical notation
system used for Europian vocal polyphonic music [52][3].

• Tempo: The pace of a piece of music. Tempo is typically associated with
the rate of periodic events (beats) that listeners perceive to occur at regu-
lar temporal intervals [38].

• Time Stretching: Changing of the length, and subsequently the tempo,
without affecting its pitch. An audio track, stretched to twice its length,
will take twice as long to play, hence having half its original tempo [12][26].

• Pitch: A perceptual property of sound that allows it to be ordered on a
frequency-related scale [31].

• Pitch Shifting: Changing the pitch of an audio with or without affecting
its length [12].

• Equalization: The process of adjusting the balance between frequency
components in an audio signal [49].

• Beat Matching: A disc jockey (DJ) technique to match the tempo of an
upcoming track with that of the currently playing track by means of time-
stretching of pitch shifting [7].

• Legato: The successive playing of notes where no perpetual gaps are left
between two notes. The extreme opposite of staccato - where notes are
cut very short [31].
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4.2 Frequency Ranges of Musical Instruments

A musical instrument is a device of which the primary capability is producing
musical sound. Musical instruments may be classified into several categories
based upon the method of producing sound [27];

• Persuccion - A musical instrument which produces sound by vibration of
its body. Sound is typically proced by striking the instrument. Percussion
instruments are categorized into two categories;

– Idiophone - An instrument whose own substance vibrates to emit
sound. A few examples for idiophone instruments are bells, clap-
pers, and rattles.

– Membranophone - An instrument which produces sound by means
of a stretched membrane. The primary example for these type of
instruments are drums [16].

• Strings - A stringed instrument will produce sound by the vibration of
stretched strings, usually made of plant fibre, metal, animal gut, silk,
plastics, and nylons. Most of the stringed instruments use a resonating
chamber or a soundboard to amplify the sound. Stringed instruments
may be struck, plucked, rubbed or blown to displace the string from its
rest position which causes it to vibrate in complex patterns [21].

• Keyboards - A series of keys, levers or push buttons which are pressed to
produce sound in a keyboard instrument. In western music, the said keys
correspond to consecutive notes in the chromatic scale, and run from the
lower bass notes located towards the left of the keyboard, to the higher
treble notes in the right. Keyboard instruments have gained a signifi-
cant importance as they enable a performer to play a large number of
notes simultaneously as well as in close succession [17]. There are sev-
eral methods for the pressed keys to generate sound. Some examples
are striking taut strings (piano), vibrating air columns (pipe organ, ac-
cordion) or electronic means (synthesizers, electronic keyboards).

• Wind - Wind instruments (aerophones) typically employ a vibrating air
column as a medium to produce sound. The primary method of gen-
erating different sounds is the change of the length of the vibrating air
column. In western music, aerophones are categorized into two main
categories based on their composition materials;

– Woodwinds - Aerophones that are made of wood or other compos-
ite materials such as flutes and clarinets. Some modern woodwind
instruments are made using metals.
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FIGURE 4.1: A popular rock song, of which the visibly obvious
beats have been created using the kick-drum and bass guitar

– Brass - Aerophones that are exclusively made out or metal. The most
common metal for brass instruments, as the name implies, is brass.
Some examples are trumpets and saxophones [28].

• Electronic - Electronic instruments produce or modify sound by electric
or electronic means. The music which is produced, and its tonal charac-
teristics (sound), are decided by the composer and hence electronic in-
struments has given way for an extremely large number of different mu-
sical sounds. Acoustic or mechanical instruments, which may amplify
the sound electrically or electronically may also be termed electronic in-
struments although their construction and the produced sound are simi-
lar to their acoustic counterparts [42].

These instruments produce a myriad of different sounds which spread through,
and sometimes a little away from the audible spectrum. Of diverse sounds mu-
sical instruments make, instruments which emit lower frequency sounds are
deemed bass instruments and are often, if not exclusively, the primary sources
for beats. Figure 4.1 is an example for a popular rock song, with visible beats
for which the primary sources are the kick-drum and the bass guitar.

Different instruments which produce sound in different frequencies contribute
to music in different ways. Bass instruments typically give way to the beat and
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TABLE 4.1: Acoustical categorization of frequencies

Frequency Octave Description
16Hz - 32Hz 1st Lower human hearing threshold. The lowest

notes of a pipe organ.
32Hz - 512Hz 2nd to 5th Rhythm frequencies. The upper and lower bass

notes lie in this region.
512Hz -
2.048kHz

6th to 7th Defines human speech, gives a horn-like or tinny
quality to sound.

2.048kHz -
8.192kHz

8th to 9th Gives a presence to speech. Labial and fricative
sounds lie here.

8.192kHz -
16.384kHz

10th Brilliance - the sounds of bells and ringing cym-
bals. Represents sibilance in speech.

16.384kHz -
32.768kHz

11th Beyond Brilliance - nebulous sounds, and passing
the upper human hearing threshold

C A

FIGURE 4.2: Standard 88-key piano keyboard with numbered oc-
taves

the groove. Instruments of higher frequencies sometimes contribute to the beat
as well. A common example for this type of an instrument is the hi-hat cymbal.
Medium to lower frequency instruments give way to the rhythm which maybe
explained as a musical background over which, a main vocal or an instrument,
which may be of a slightly higher frequency is sung, or played. Table 4.1 shows
how different frequency ranges can be categorized acoustically.

The musical octave, is the distance between one musical note and another which
is double its frequency. Figure 4.2 shows a standard 88-key piano layout, with
the octaves numbered and marked. The key with the marking C represents the
note middle C (table 4.2) while the key marked A represents the A440 note.

Table 4.2 shows the frequencies of several notes in different musical instru-
ments. This information shows that much of the audible frequencies f lie in
the range of 32Hz ≤ f ≤ 4.1kHz. This information is used when defining a co-
efficient for decimation in equation 5.5 and in deciding the frequency interval
that needs to be extracted.
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TABLE 4.2: Frequencies of musical instrument notes

Frequency Description
8.18 Hz Lowest organ note.
16.35Hz Lowest note for tuba and large pipe organ. Lowest note in

a Bosendorfer Imperial 97-key grand piano [10].
32.70Hz Lowest C note on a standard 88-key piano.
65.41Hz Lowest cello note.
130.81Hz Lowest note for viola and mandola.
261.63Hz Middle C.
523.25Hz C note in the middle of the treble clef.
1046.5Hz The approximate highest note reproducible by the average

female human voice.
2093Hz Highest note for a flute.
4186 Highest note on a standard 88-key piano.
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5 Methodology

The method of onset detection presented in this thesis replaces the short time
Fourier transform (STFT) used in many beat tracking and onset detection sys-
tems [34][20][24][39] with the s-transform. This is due to the fact that the s-
transform provides a better frequency resolution at lower frequencies and a
better time resolution at higher frequencies as explained in section 3.6.

Every onset detection system which rely of spectral features utilize a STFT to
obtain a time frequency representation of the audio waveform [30][13][14][40].
But, due to a few limitations in the STFT which have been discussed in the
previous chapter, the STFT spectral feature based onset detection methods do
not yield good results for some genres of music. Hence the modified system
presented in this thesis will utilize a s-transform in place of the standard STFT
for higher accuracy levels.

5.1 Proposed method - overview

Although onset detection itself is a pre processing step in any beat tracking
system, this thesis will consider onset detection as a whole step and break it
into smaller sections. Figure 5.1 shows a flowchart of the broken down sec-
tions of the proposed onset detection operation. This chapter will explain each
block in the flowchart and how it contributes to the presented method of onset
detection.

5.1.1 Read Audio/ Single Channel Conversion

The audio file excerpt is read and converted to a workable format. In the sim-
ulations, the audio file format is .wav and each file is read as a two channel
vector. The two channels in the vector correspond to the left and right chan-
nels in the stereo audio file. Figure 5.2 shows the two channels of a stereo song
excerpt, plotted separately. The primary criterion for an audio to be stereo is
the presence of two nonidentical channels. If the two channels are identical, or
if one channel is blank, the audio file can be considered mono although there
are two channels present [18].
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FIGURE 5.1: Flowchart of the proposed onset detection system
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FIGURE 5.2: Left and right channels of a stereo song excerpt, plot-
ted separately
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For ease of calculations, the two channels are converged to a single channel
vector. In musical terms this is equivalent to a stereo to mono conversion. A
very simple conversion method was used which is;

x(n) =
L(n)

2
+

R(n)
2

. (5.1)

Where x(n) represents the converted single channel vector and L(n) and R(n)
represent the left and right tracks of the audio file respectively. This is true
in the case of a stereo recording, where a recording source is placed halfway
between the left and right audio sources, and it would capture an approximate
amount of L(n)

2 + R(n)
2 [5].

5.1.2 Decimation

The single channel audio signal is decimated to reduce the sampling rate of
the audio file. The term downsampling can be used interchangeably with dec-
imation [37]. The following notation can be used to represent the decimation
of a sequence x(n), by a factor of D;

y(n) = x(nD), (5.2)

where y(n) represents the decimated sequence. y(n) is obtained by taking a
sample from the sequence x(n) for every D samples. Consider the following
sequence x(n);

x(n) = 4, 7, 8, 6, 5, 4, 7, 8, 5, 1, 4, 7,−9, 8, 9,−6, 4, 4,−8,−1, 0. (5.3)

If x(n) is decimated by a factor of 3 to obtain y(m), y(m) may be expressed as;

y(m) = 4, 6, 7, 1,−9,−6,−8. (5.4)

When a decimation is performed on a sequence of data, the sampling rate is
reduced by the same amount as the decimation factor. If a signal of sampling
frequency fs is decimated by a factor of D, the new sampling rate fsDmay be
expressed as;

fsD =
fs

D
. (5.5)

A decimation factor of d, where 10 ≤ d ≤ 20, was chosen as it would eliminate
aliasing.
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5.1.3 Frequency Ranges

The theory proposed by Nyquist and Shannon specifies the upper bound for
the sampling interval of a discretized signal such that the sampled signal con-
tains all of the available frequency information present in the original signal
[45]. A signal sampled at a interval finer than the Nyquist interval may be
perfectly reconstructed via interpolation [22].

The sampling frequency of the sampled and decimated signal plays a vital
component in determining the range of frequencies for which meaningful in-
formation can be captured. If the sampling rate of the signal is fs, the sampling
rate after decimation fsD is expressed in equation 5.5. Hence, according to the
Shannon-Nyquist theorem, the range of frequencies f of the decimated signal
for which meaningful information can be retrieved is;

1 ≤ f ≤ fsD

2
. (5.6)

In recorded music and many acoustic performances audio waves are typically
sampled at 44.1kHz, 48kHz, 88.2kHz or 96kHz to capture the entire audible
spectrum of 20− 20000Hz. In many recorded music, such as compact disc’s
(CD), the sampling rate is of a standard value of 44.1kHz [44].

For a recorded piece of music which is sampled at 44100Hz, which is dec-
imated by a factor of 10, the new sampling rate is 44100

10 = 4410Hz. The
range of frequencies f for which meaningful information could be retrieved
is 1 ≤ f ≤ 2250Hz (equation 5.6). This range of frequencies are sufficient to
detect meaningful frequency content in a piece of music [41].

5.1.4 DFT Computation/ S-Transform

The discrete Fourier transform is calculated for the decimated audio signal.
The DFT is calculated using the fast Fourier transform (FFT) algorithm. The
DFT thus obtained is used to compute a S-Transform matrix which will be
elaborated in a later section.

5.1.5 Band Splitting

Many of the current implementations employ the STFT matrix and a summa-
tion in frequency [1], or a mean along the frequency [20], or a median along
the frequency [39]. As in the case of onsets being masked by continuous tones
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of higher amplitude [34] in the case of a temporal analysis, the detection may
be hindered by neighboring frequency components of higher amplitudes.

It was found that many beat components occur at relatively low frequencies
with the exception of hi-hat notes. Most beats are a resultant of bass instru-
ments - such as kick drums, bass guitars, double basses, bass piano keys, and
pedal keyboards. As these instruments produce frequencies which may barely
be audible (refer table 4.2), and they are the primary creators of beats, the de-
tection of such frequency components is crucial in an accurate onset detection.

The s-transform matrix is split into a small frequency bands of 50 − 100Hz.
These narrow frequency bands allow for the accurate retrieval of true onset
components.

5.1.6 Mean Calculation

The mean through time for each frequency band is calculated to obtain an on-
set envelope of the band. Several of the existing methods has experimented
with computing the summation, mean and median through frequency. Section
6.3 elaborates on this and provides a comparison of results for the different op-
erators. It can be seen from figure 6.10 that all three operators act in a similar
way. The mean was chosen to obtain an onset envelope in the presented onset
detection method as the mean is capable of accurately representing the data in
each time band [39].

5.1.7 Thresholding

In signal analysis, thresholding is a is a nonlinear, time-invariant operation and
is used to separate the signal into segments according to the value assumed by
the signal at each interval. A global threshold, or a local threshold may be
applied [33].

Each frequency band in the s-transform matrix is applied with a cutoff threshold,
where any value above the threshold will be conserved, and any value below
the threshold will be disregarded to isolate onset components from the rest of
the signal. The most basic thresholding operation is the application of a fixed
global threshold. Let the components of signal f (t), above the threshold τ
be preserved, and components below τ be discarded to create a thresholded
signal fthresh(t);

fthresh(t) =

{
f (t) if f (t) ≥ τ,
0 if f (t) < τ.

(5.7)
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As peaks need to be identified in each frequency band, a unique global thresh-
old will be applied to each band. The human auditory system cannot distin-
guish two sounds if they are less than 50ms apart [6][9][30]. Hence if there
are multiple peaks situated in very close proximity to each other they will be
considered as a single peak.

Beat causing onsets occur in static frequency bands. Hence the thresholded fil-
tered signal will be checked for periodicity - i.e., the frequency band containing
true onsets will consist of periodic peaks. The frequency band consisting of the
most periodic peaks (one of the bands if there are several periodic bands found
- i.e., appendix 8.1.6) will be selected as the onset components of the signal.

5.2 Application of the S-Transform to Musical On-
set Detection

As made evident by the previous sections, the S-transform is indeed a more
suitable choice for the task of localizing onset components in music signals.

The algorithm, as explained in section 5.1, is quite similar to a majority of the
existing methods [30][20][39] with the exception of a few steps. The major
difference in the presented method is the usage of the s-transform in place of
the STFT, and post-bandwise splitting.

It can be seen from the results presented in chapter 6, that the s-transform
based approach provides a significant advantage in a number of cases where
the onset detection may not be accurate for traditional methods. This is due to
the frequency dependent analysis window found in the s-transform over the
fixed length window used in STFT.
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6 Results

6.1 Test Data

There have been a number of onset detection and beat tracking systems pro-
posed with varying accuracy levels. Onset locations for kick-drum driven
songs such as pop, rock and dance music are easy to identify using existing
methods, but as the degree of the strength of transients decreases, the accu-
racy levels of these methods too, will decrease [30][13][14][40].

A total of 5 such methods were simulated and tested using a selection of music
pieces. The pieces of music are of diverse genres and include pop, dance, and
classical music. For ease of simulation, 10 second excerpts of each piece was
chosen.

Of the selection of music, it can be observed that genres such as dance and pop
has very strong kick-drum driven beats, while the classical music pieces do
not have visibly identifiable transients. Figure 6.1 shows a comparison of the
audio waveforms of a dance music piece and a classical music piece.

It can be clearly seen that the dance music has very strong and visually iden-
tifiable beats while the classical piece lacks such visually observable beat loca-
tions. This is due to the strong amplitude modulations which mask off onsets
carrying beat information. In such cases, it is difficult for most systems to de-
tect onset locations accurately. But in the case of the dance music piece, as
the beat locations are emphasized, it is easy for most systems to detect onset
locations.

A selection of song excerpts, from a wide array of musical genres have been
used to simulate existing onset detection methods. Sections 6.2.1 through 6.2.4
is a brief breakdown of the algorithms and their results. A total of eight song
excerpts have been used in the simulations, and the eight song excerpts will
be named example1 through 8. Each song excerpt is 10 seconds long and have
been selected so as the 10 second section represents as much information as
possible. Table 6.1 gives a brief description of the song styles and their content.
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FIGURE 6.1: A comparison of the waveforms of a dance music
piece (top), and a classical piece (bottom)

TABLE 6.1: Test dataset

Song Style Descriptions
example 1 Electronic

dance song
The beats are kick-drum driven and
very stong and loud.

example 2 Classical
piece

An instrumental section, dominated
by violions, cellos and other strings.

example 3 Classical
piece

Drums and percussion is lacking.
Prominent orchestral string sections.

example 4 Pop song Beats are maintained by the synthe-
sizer. Kick-drums or bass guitars are
not very prominent.

example 5 Pop/dance
song

An instrumental section and the
melody is driven by saxophone. Kick
drum driven beats are present.

example 6 Rock/dance
song

Very strong kick-drum and hi-hat
driven beats. Possibility of double
beat errors due to the kick-drum and
hi-hat rhythms

example 7 Pop song Strong kick drum driven beats are
present. The synthesizer is dominant.

example 8 Opera music A dominant string section is present.
Percussion instruments are present.
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FIGURE 6.2: A flowchart of the algorithm presented in [1]

6.2 Benchmarks

As explained in the earlier section, 5 existing onset detection methods have
been chosen as benchmark tests to compare the performance of the proposed
method. The selected methods have been elaborated in section 2. This section
provides a flowchart for each step in the onset detection method being con-
sidered, while stating the parameters of the algorithm used for simulations.
Following which, the results of the 8 selected songs are plotted for the method
being considered.

6.2.1 Spectral Energy Flux method

The method proposed by Alonso et al. uses a summation of the filtered enve-
lope of the STFT matrix along the frequency axis. Figure 6.2 shows a flowchart
of the algorithm.

The STFT is calculated with a window of length 512 samples, the overlap be-
tween two succesive windows is 50%. The number of FFT points is taken to be
1024 [1].

Figure 6.3 shows the resultant onset envelope obtained using the algorithm
presented in [1]. It can be observed that this method works well for some
pieces of music, but fails to identify onsets in some.

The x-axis represents time and the y axis represents onset strengths. It can be
observed that the algorithm gives distinct peaks for examples 1, 4, 6, and 7
while it fails to give distinct peaks for the rest of the examples.
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FIGURE 6.3: A comparison of results for [1]

6.2.2 Onset Strength Envelope method

The algorithm presented by Ellis in [20] uses a STFT matrix converted to the
Mel scale. Figure 6.4 shows a flowchart of the algorithm. The STFT is calcu-
lated with a window length of 32ms, the window is shifted by 4ms so as the
overlap is 87.5%. The FFT is calculated with 2048 points [20]. The first order
difference along the time for each frequency bin is summed to obtain the onset
strengths.

Figure 6.5 shows the results of the algorithm as presented in [20] for the eight
examples. The x-axis is the time, and the y-axis is the onset strength. It can be
seen that the performance is better than the previous method, but examples 2,
3, and 9 are not detected.

6.2.3 Median Onset Aggregation method

McFee et al. suggests a modification for the work done in [20], by introducing
a median operator in place of the summation. The Mel scaled STFT matrix is
used to identify onset components. Figure 6.6 shows a flowchart of the algo-
rithm presented in [39].
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FIGURE 6.4: A flowchart of the algorithm presented in [20]
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FIGURE 6.5: A comparison of results for [20]
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FIGURE 6.6: A flowchart of the algorithm presented in [39]

The results for the eight examples when used as an input to [39] is given in
figure 6.7. The STFT was calculated with a window length of 64ms and a hop
size of 8ms. The number of FFT points used is 1024.

6.2.4 Energy Flux method

Another modification to the algorithm presented by [20] is given by Laroche et
al. The modification calls for the Mel scale conversion to be be replaced with a
square root operator. Figure 6.8 shows a flow chart of the modified algorithm
as presented by [34]. The STFT is calculated with a window of 10ms and a hop
of 2ms. The number of FFT points is 1024.

Figure 6.9 shows the results of the modified algorithm when tested with the
eight examples. It can be seen that while results are similar to [20] and [39],
examples 2, 3, and 8 have still not been recognized.

The sections show that existing methods do not yield graceful results for musi-
cal genres such as classical music and opera music. To better capture informa-
tion on beat causing onsets in these styles, the s-transform was used in place of
the STFT as explained in section 5. The mean is calculated in frequency bands
of 50Hz - 100Hz for better capturing on onset information. Section 6.3 provides
several simulation results to justify the splitting of the s-transform matrix into
frequency bands.

6.3 S-Transform - Mean, Median and Sum opera-
tors through Complete Frequency Bands

As explained in section 6.1, many of the existing systems have difficulty in
localizing onset components in genres such a classical music and opera music
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FIGURE 6.8: A flowchart of the algorithm presented in [34]
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FIGURE 6.9: A flowchart of the algorithm presented in [34]

[30]. The method presented by this thesis uses a s-transform in place of the
STFT for better frequency component localization.

Several methods were tried to isolate onset components form the s-transform
matrix. These methods have been inspired from existing algorithms. Some of
these include;

• Summation through each time bin [20]

• Median through each time bin [34]

• Mean through each time bin [39]

Figure 6.10 shows a comparison between the three operations for three of the
eight examples considered in section 6.1.

It can be seen that the s-transform yields better results for some but the overall
result is fairly meaningless unless the beats are very prominent in the song.
As existing methods yield somewhere simpler computations for songs with
prominent beats, and similar results, a bandwise analysis is performed to bet-
ter capture onset components.
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FIGURE 6.10: Difference between the summation, median, and
mean through each time bin in the s-transform matrix

6.4 Bandwise Analysis

Beat causing onsets generally occur in a static frequency band - i.e., Onsets
which influence on the beats generally have the same - or very similar frequen-
cies. This is due to the fact that the beat will generally be driven by a single
instrument. A bass guitar and a trumpet will not create alternating beats. Gener-
ally, the beat will be maintained by a bass guitar, kick drum, double bass or
an instrument which would emit sounds of relatively lower frequencies when
compared to others it is being played with.

To successfully localize and identify beat causing onsets the s-transform ma-
trix, is split into bands of 50Hz− 100Hz. The median operator is performed in-
side the frequency band which will yield onset envelopes. The median, mean,
and sum operators retain similar results when computed (refer figure 6.10) and
the median operator is selected as it is the best representation for the data. True
onsets will be filtered using a global threshold, and a comparison of periodicity
will be performed - i.e., beat causing onsets will be periodic and if a frequency
band contains equally spaced distinct onsets, it can be assumed that they are
beat causing onset components.

Figure 6.11 shows the mean operator for each complete time bin - which is
the mean of all frequency components at a single time instant, plotted against
onset strength. It can be seen that the information presented in figure 6.11 is
meaningless in the case where beat causing onsets are concerned.
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FIGURE 6.11: Example 2 - the mean operator is applied to each
time bin in the s-transform matrix

To extract meaningful information, the s-transform is split into frequency bands.
The s-transform matrix for example 2, has been split into frequency bands each
of 100Hz. The first 10 bands are plotted in figure 6.12.

It can be clearly seen that there are distinct peaks in frequency ranges 300Hz−
400Hz, and 400Hz− 500Hz. Table 4.1 shows that this frequency range is be-
tween the 2nd and 5th octaves where upper and lower bass note frequencies
lie. This information supports the claim that beat causing onsets will occur at
static frequency bands.

Consider example 4. Figure 6.10 shows that example 4 did not yield good
results for the complete summation, mean or median across each time bin in
the s-transform matrix. Figure 6.13 shows that when split into bands, some
frequency bands retain meaningful information which have been masked by
other bands. In the case of example 4, frequencies 900Hz − 1000Hz retains
meaningful information.

The method was applied to all 8 examples with successful results. Refer ap-
pendix 8 for more detailed results for all example music pieces. Upon suc-
cessfully localizing onset components within their respective frequency bands,
they were extracted by means of a threshold. And the most suitable onset com-
ponent was selected by periodicity.
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the proposed method

6.5 Comparison with existing methods

The proposed method: splitting of the s-transform matrix into frequency bands
has significant advantages over existing methods for some styles of music for
which they do not exhibit good performance. For music genres where sharply
defined onsets are present, the proposed method has similar performance to
existing methods.

A comparison of four existing methods with the proposed method is presented
in figures 6.14 and 6.15, for two musical styles.

Example 1 is a electronic dance song. The beat locations are clearly visible
in the waveform itself. It can be observed that the proposed method and the
existing methods have similar performance for music of these types.

Example 2 is a classical music piece. The existing methods do not yield a very
good performance for music of genres of the likes of example 2. But it can
clearly be seen that the proposed method would impose a significant advan-
tage for music in the likes of example 2.
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FIGURE 6.15: Example 2 - A comparison of existing methods and
the proposed method
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7 Conclusions and Future Work

This chapter serves as a summary of the conclusions of this thesis, while pro-
viding a brief highlight of the advantages of the proposed method over exist-
ing methods. Following which, several possible modifications are highlighted
to improve the proposed method.

7.1 Conclusions

While existing methods excel at identifying beat causing onset locations in mu-
sical genres such as rock music dance music, they fail in identification of beat
causing onsets in genres such as classical music and opera music.

There are two main cases when an onset detection method would not yield
accurate results as highlighted in section 1;

1. When the rhythm of the music is less pronounced,

2. During rapid tempo changes [30].

The work done in this thesis proposes a method that successfully overcomes
point 1 in the above list. The rhythm may be less pronounced die to strong
amplitude modulations, as found in classical music and when neighboring
frequency components may mask off beat causing onsets.

The method proposed by this thesis introduces the s-transform to replace the
STFT which is used in many of the existing onset detection methods. The pro-
posed method also introduces a frequency band splitting in the s-transform
matrix to localize musical onsets in neighboring frequency bands. Chapter 4
provides a basis for this operation, as beats are usually caused by a single,
lower frequency instrument.

Onset components may be gracefully detected using the proposed method for
songs for which other methods do not yield promising results. The test data
is of diverse musical genres and is presented in section 6.1. A comparison
between onsets detected using existing mehtods, and onsets detected by the
proposed method is presented in chapter 6.
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The s-transform, provides a better capture of spectral information due to its
frequency dependent analysis window. Onset components which may be masked
by those in neighboring frequencies are isolated by employing frequency band
splitting. The beat causing onsets of a piece of music can be gracefully located
through the proposed method by means of frequency band splitting, thresh-
olding and periodicity checking.

7.2 Recommendations

The FFT shines in the fact that it takes an extremely small time to compute even
a large dataset due to its efficient factoring algorithm. The primary reason for
many systems to employ the STFT may be its computational speed.

Although the results have proven that it is more favorable, a significant dis-
advantage in the s-transform based approach is the computational cost. The s-
transform is computationally costly and requires a significant time to compute,
even on a high-end computer. This drawback limits the presented method
from being used in real time. Modified s-transform functions may be applied
to increase computational speed.

The proposed method takes into consideration the periodicity of onsets - i.e.,
the period between two successive onsets need to be similar. Due to this hy-
pothesis, the proposed system will only work for songs with a constant time
signature - i.e., If the song goes from a 4

4 to a 6
8 , the system will fail as the peri-

odicity between onsets is lost. Due to the periodicity factor, abrupt and drastic
tempo changes may also not yield accurate results.
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8 Appendix A

8.1 Bandwise Splitting of S-Transform matrix

The s-transform matrix is split into frequency bands of 100Hz as elaborated
in section 6.4. Following are the resultant split frequency bands for all eight
example tracks.

8.1.1 Example 1

FIGURE 8.1: Example 1, split into 20 frequency bands of 100Hz
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FIGURE 8.2: Example 1, split into 20 frequency bands of 100Hz,
and thresholded

8.1.2 Example 2

FIGURE 8.3: Example 2, split into 20 frequency bands of 100Hz
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FIGURE 8.4: Example 2, split into 20 frequency bands of 100Hz,
and thresholded

8.1.3 Example 3

FIGURE 8.5: Example 3, split into 20 frequency bands of 100Hz
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FIGURE 8.6: Example 3, split into 20 frequency bands of 100Hz,
and thresholded

8.1.4 Example 4

FIGURE 8.7: Example 4, split into 20 frequency bands of 100Hz
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FIGURE 8.8: Example 4, split into 20 frequency bands of 100Hz,
and thresholded

8.1.5 Example 5

FIGURE 8.9: Example 5, split into 20 frequency bands of 100Hz
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FIGURE 8.10: Example 5, split into 20 frequency bands of 100Hz,
and thresholded

8.1.6 Example 6

FIGURE 8.11: Example 6, split into 20 frequency bands of 100Hz
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FIGURE 8.12: Example 6, split into 20 frequency bands of 100Hz,
and thresholded

8.1.7 Example 7

FIGURE 8.13: Example 7, split into 20 frequency bands of 100Hz
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FIGURE 8.14: Example 7, split into 20 frequency bands of 100Hz,
and thresholded
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