
SHEFFIELD HALLAM UNIVERSITY

Faculty of Arts, Computing, Engineering and Sciences

CONTROLLING NON-PLAYABLE
CHARACTERS (NPC) IN VIDEO

GAMES USING LOCAL KNOWLEDGE

BY

NIPUNA HIRANYA WEERATUNGE

Master of Science in Telecommunication and Electronic
Engineering

December 1, 2016

PREFACE

This report describes project work carried out in the Faculty of Arts, Computing, Engi-
neering and Sciences at Sheffield Hallam University between January 2016 and September
2016.

The submission of the report is in accordance with the requirements for the award of the
degree of Master of Science in Telecommunication and Electronic Engineering under the
auspices of the University.

i

“Introduce a little anarchy. Upset the established order, and everything becomes chaos.
I’m an agent of chaos...”

—The Joker, The Dark Knight (2008)

ii

ACKNOWLEDGEMENT

I would like to extend my sincerest gratitude to my parents, Ajith and Dillanjani and my
sister, Wathsala for all the support, and at times the necessary push given to me during
my course of study.

My sincere appreciation is extended to Dr.Chathuranga Weeraddana for supervising
me throughout this work and for the unwavering support and invaluable guidance given
during the course of this thesis.

A special thank you goes to Mr.Prabath Buddhika, the MSc program coordinator and
to the Department of Electrical and Computer Engineering.

Without all of you, it is highly unlikely that this thesis would have ever seen the light
of day!

iii

ABSTRACT

Pathfinding is an integral part in any video game environment. Pathfinding in video
games, in its simplest form, directs an in-game agent from a start position to a destination
point. Typically in a video game, one or more characters will be controlled by the inputs
from the player. The in-game agents that are not controlled by the player are known
as Non-Playable Characters (NPC). A significant component of an Artificial Intelligence
(AI) system of a video game is reserved for pathfinding for NPC agents.

One of the most commonly used algorithms for video game pathfinding is the A*
algorithm. From 2 dimensional Real-Time Strategy (RTS) games to 3 dimensional Role-
Playing Games (RPG), A* based approaches have been used extensively. Windowed
Hierarchical Cooperative A* (WHCA*), which is an extension of the A* algorithm, is
widely used for multi-agent pathfinding. Although the A* based methods can route agents
in an efficient manner, the algorithm needs to have global knowledge of the video game
environment in order to operate. In other words, the A* inspired algorithms needs to know
the complete path before the agent can be moved. When hundreds of agents needs to be
moved across a video game map, the use of global knowledge increases the computational
complexity of the problem. A* inspired approaches will need to compute and store the
graph for each of the agents in order to operate, imposing a heavy computational strain on
hardware. In addition, video game environments are generally dynamic and can change
during run time. For instance, a path calculated by the WHCA* algorithm can suddenly
be blocked due to the presence of a mobile agent. In such a case, an A* based approach
would have to discard the previously calculated path, partially or completely, and would
have to recalculate.

In this thesis, we propose a novel pathfinding algorithm, named LoS by Water-Filling,
that can navigate agents to a target destination in the presence of obstacles using local
knowledge. This approach is based on the argument that a water stream is guaranteed
to flow from the source to the destination, given that the source and destination are
appropriately oriented and the necessary openings are there. The proposed method is a
two-part based approach. When no line of sight (NLoS) can be established from start
position to target destination due to the presence of obstacles, the proposed solution
navigates an agent to a line of sight (LoS) position to the target. Once line of sight
(LoS) can be established, the solution uses a Particle Swarm Optimization (PSO) based
method to converge the agents on the target destination. The essence of this proposed
algorithm is implemented on a real gaming environment constructed in GameMaker:
Studio. Convergence of all the proposed algorithms is guaranteed. The convergence
follows the premise that a stream of water is guaranteed to flow from the source to the
destination, in the direction of gravity, irrespective of the starting position, given that the
destination is at a lower height than the source and there exists a path between the source
and the destination.

iv

CONTENTS

PREFACE i

ACKNOWLEDGEMENT iii

ABSTRACT iv

CONTENTS vi

ACRONYMS vii

LIST OF FIGURES viii

LIST OF TABLES ix

1 INTRODUCTION 1
1.1 Motivation . 1
1.2 Research Goal and Outline of the Thesis 2

2 RELATED WORK 4
2.1 Pathfinding in Video Games . 4

2.1.1 Existing Pathfinding Algorithms 4
2.1.1.1 A* Algorithm . 4
2.1.1.2 Windowed Hierarchical Cooperative A* Algorithm . . . 6

2.2 Classic Particle Swarm Optimization Algorithm 8
2.3 Summary . 10

3 PROPOSED SOLUTION 11
3.1 NLoS Algorithm . 11

3.1.1 Reasoning Behind the Proposed Solution 11
3.1.2 Notations and Definitions . 12
3.1.3 LoS by Water-Filling . 16

3.2 Summary . 20

4 LoS ALGORITHMS 21
4.1 Constriction Coefficient . 21
4.2 PSO Version 1 without Particle Interaction and Constant Springs 22
4.3 PSO Version 2 without Particle Interaction and Random Springs 23
4.4 PSO Version 3 with Particle Interaction and Constant Springs 23
4.5 PSO Version 4 with Particle Interaction and Random Springs 24
4.6 Summary . 24

v

5 RESULTS and DISCUSSION 25
5.1 Testing Environment . 25

5.1.1 Employed Video Game Map . 26
5.1.2 Movement Criteria . 26

5.2 Results and Discussion . 27
5.2.1 LoS by Water-Filling Algorithm Applied in a Real Video Gaming

Environment . 27
5.2.2 LoS by Water-Filling NLoS Algorithm 28
5.2.3 LoS Algorithms . 30

5.3 Summary . 32

6 CONCLUSIONS and FUTURE WORK 34
6.1 Conclusions . 34
6.2 Future work . 35

vi

ACRONYMS

AI Artificial Intelligence

GML GameMaker Language

GMS GameMaker: Studio

LoS Line of Sight

NES Nintendo Entertainment System

NLoS No Line of Sight

NPC Non-Playable Characters

PSO Particle Swarm Optimization

RPG Role-Playing Games

RTS Real-Time Strategy

WHCA* Windowed Hierarchical Cooperative A*

vii

LIST OF FIGURES

3.1 Reasoning behind the idea: (a) Flow of a water stream originated at A to
point E. ; (b) Coordinate system. 12

3.2 Ball . 13
3.3 Slab . 13
3.4 Illustrations of Exit Sets and Exit Points: (a) Exit Set 1. ; (b) Close up

of Exit Set 1. ; (c) Exit Set 2. ; (d) Close up of Exit Set 2. 14
3.5 Translated Upper Right Orthant . 15
3.6 Translated Upper Left Orthant . 15
3.7 Flowchart of LoS by Water-Filling algorithm 19

5.1 GameMaker Language . 25
5.2 GameMaker: Studio sample map . 26
5.3 Allowed movements in the grid . 26
5.4 LoS by Water-Filling implemented in GMS 27
5.5 Game map for LoS by Water-Filling algorithm simulation 29
5.6 NLoS algorithm simulation result . 29
5.7 Game map for LoS algorithm simulations 30
5.8 LoS algorithms simulation results: (a) Classic PSO. ; (b) PSO Version 1.

; (c) PSO Version 2. ; (d) PSO Version 3. ; (e) PSO Version 4. 31

viii

LIST OF TABLES

5.1 LoS algorithms: Number of iterations needed for convergence 32

ix

Chapter 1

INTRODUCTION

The history of commercial video games runs back to the early 1970s. Computer Space by
Nutting Associates which was introduced in 1971, is considered to be the first commer-
cially made arcade game. Nonetheless, the prize for the first truly commercially successful
arcade video game goes to Pong which was produced by Atari in 1972. The success of
Pong spawned the inception of home video game systems such as the massively successful
Nintendo Entertainment System (NES) which was released worldwide in 1986. The NES
gave birth to classical and beloved video games such as Super Mario Brothers and Donkey
Kong which were monumental in the video game revolution [1]. Even in the early days of
the NES, Non-Playable Characters (NPC) in video games played a vital role in providing
a fulfilling gaming experience to the player.

With the advances of microprocessor technology, video game developers have much
more freedom and resources to work with. Compared to the 8 bit microprocessors that
ran the NES and Atari game consoles, game designers today have access to 64 bit micro-
processors possesing substantially more processing power. Even though these resources
can essentially be allocated across the main components of a video game such as graph-
ics/visuals, Artificial Intelligence (AI) and systems that control the inputs from the player,
many of the recent games experienced faster advances in graphics/visuals compared to
AI [2]. Hence, it is safe to say that systems that control NPC in video games have seen
only a lesser share of the computing resources allocated to them.

Video game AI systems oversee the controlling of NPC as well as the interactions
between the player and the video game. One of the fundamental aspects of the AI
system is pathfinding. Pathfinding, in its simplest terms, would be to direct in-game
agents from a starting position to a destination position. However, an AI system has to
control the NPC in a way that exhibits some form of intelligent behavior. For instance,
not many video game players would flock to play a game that haphazardly steers enemy
NPC away from the players when in actuality the NPC need to be moving towards them.

1.1 Motivation

The motivation for this thesis comes from the behavior of NPC in Real-Time Strategy
(RTS) games. In many RTS games, such as Age of Empires series, World of Warcraft
series and League of Legends series, often a large number of agents need to be moved across
the map across different types of terrain. Although the prevailing pathfinding algorithms
perform relatively well in these types of scenarios, they require global knowledge of the
video game environment to operate. In other words, these algorithms need to know

1

the complete path before an agent can be moved. When there are hundreds of agents
that need to be moved across a video game map, the computational complexity of the
pathfinding problem increases significantly. Algorithms that use global knowledge require
the graph to be calculated and stored for each of these agents. This can impose a heavy
computational strain on the used hardware, especially when a large number of agents
needs to be navigated through a sizeable video game map.

Thus, there is a pressing need for algorithms that can operate using local knowledge.
Essentially, a pathfinding algorithm that employs local knowledge only needs to know
the target destination. It does not need to know the complete path or even the location
of the obstacles and are more suited for dynamic video game environments. Hence, a
pathfinding approach that employs an algorithm that uses local knowledge reduces the
computational strain on hardware while better adapting to dynamically changing video
game environments. This conundrum served as the motivation for designing a pathfinding
algorithm that can operate using local knowledge.

1.2 Research Goal and Outline of the Thesis

The goal of this thesis is to design a novel algorithm that is capable of routing agents
to a target destination in the presence of obstacles using local knowledge. The proposed
solution follows the premise that a water stream is guaranteed to flow from its source to
the destination, in the direction of gravity given that the necessary openings are there.
We propose a two-part based solution in this thesis which is divided into the no line
of sight (NLoS) instance and the line of sight (LoS) instance. The proposed solution
is capable of navigating agents from a starting position to a target destination in the
presence of obstacles using local knowledge.

Chapter 2 is reserved for investigating the existing video game pathfinding approaches.
Mainly, the A* algorithm and one of its extensions, the Windowed Hierarchical Coop-
erative A* (WHCA*) algorithm will be explained in detail. In addition, areas that can
be improved such as pathfinding using local information while eliminating the need for
global information will be elaborated upon. We will also probe into the classic Particle
Swarm Optimization (PSO) algorithm and its workings which serves as the basis for the
employed LoS algorithm.

Chapter 3 will explore the main contribution of this thesis. In this chapter, we in-
troduce the LoS by Water-Filling algorithm which routes agents to a line of sight (LoS)
position using local knowledge when no line of sight (NLoS) can be established due to the
presence of obstacles. This section will explain the necessary mechanics and the behavior
of the proposed solution that is needed to control NPC in a gaming environment. The
intuition that was the inspiration behind the designed algorithm will also be explained
in detail.

Chapter 4 is dedicated to explaining the employed LoS algorithms which are extracted
from existing literature. All of the algorithms that are presented here are based on
the classic PSO paradigm. Four PSO based algorithms will be discussed as potential
candidates for the LoS instance. Out of the presented four algorithms, one is chosen as
the LoS algorithm.

Chapter 5 will cover the simulation results, the discussion and the testing environment.
The obtained simulation results and the subsequent discussion will further solidify the
rationale behind the designed algorithm. The game environment that was used for the

2

simulation and the simulation tool will also be briefly explained.
Chapter 6 will conclude the thesis. A summary of the main results will be presented

while potential avenues for future research will also be highlighted.
In the next chapter, we will explore the existing video game pathfinding solutions as

well as the mechanics of the classic PSO algorithm. It would also delve into the necessity
of efficient pathfinding approaches in video games.

3

Chapter 2

RELATED WORK

The main objective of this chapter is to discuss pathfinding relating to a video game
setting. Then, the existing pathfinding methods are investigated while identifying areas
that can be further improved. Finally, the classic PSO algorithm and its working envi-
ronment is presented. This chapter will essentially serve as the bridge connecting existing
methods and the areas that can be potentially improved.

2.1 Pathfinding in Video Games

Pathfinding in its broadest definition, refers to finding the shortest route between two
end points. As video game technology develops, pathfinding has become one of the most
popular and frustrating problems in the game industry. Modern Real-Time Strategy
(RTS) games and Role Playing Games (RPG) often include many scenarios that deal
with sending an agent(s) to a predetermined position or towards a position determined
by the player. Thus, often the most common application of video game pathfinding is to
direct an agent from a starting position to a target destination while avoiding obstacles
in the most efficient manner possible [3].
Pathfinding can be broken down into the following categories [4],

• Cooperative pathfinding- each agent is assumed to have full knowledge of the other
agents and their planned routes

• Non-Cooperative pathfinding- agents have no knowledge of other agents’ plans and
must predict future movements

• Antagonistic pathfinding- agents try to get to their destination while preventing
other agents from reaching theirs

This thesis deals with Non-Cooperative pathfinding where agents have no prior knowl-
edge regarding the movements of the other agents. The following section explains the
currently employed video game pathfinding algorithms.

2.1.1 Existing Pathfinding Algorithms

2.1.1.1 A* Algorithm

Probably, the most commonly used video game pathfinding algorithm is the A* algorithm
[5]. It was introduced in 1968 by Peter Hart, Nils Nilsson and Bertram Raphael in the

4

paper A Formal Basis for the Heuristic Determination of Minimum Cost Paths [4]. A*
maintains two node lists, a closed list for which optimal paths are known and an open
list which contains the search candidates [6].
The pseudo-code of the original A* algorithm is as follows [3]:

Algorithm: A*

1. Add the starting node to the open list.

2. Repeat the following steps:

(a) Look for the node which has the lowest f value on the open list. This node
will be referred to as the current node.

(b) Switch it to the closed list.

(c) For each reachable node from the current node

i. If it is in the closed list, ignore it.

ii. If it is not on the open list, add it to the open list. Make the current node
the parent of this node. Record the f , g, and h value of this node.

iii. If it is on the open list already, check to see if this is a better path. If so,
change its parent to the current node, and recalculate the f and g value.

(d) Stop when:

i. Add the target node to the closed list.

ii. Fail to find the target node, and the open list is empty.

3. Trace backward from the target node to the starting node. This is the path.

The A* algorithm finds a path by using a cost function. Specifically, the algorithm
chooses a path that minimizes the following cost function,

f(n) = g(n) + h(n), (1)

where g(n) is the exact cost from starting point to any point n and h(n) is a heuristic
that estimates the cost from point n to the destination.

In order for the A* algorithm to find the most optimum or the shortest path, the used
heuristic function must be admissible. This means the heuristic should never overestimate
the actual cost of getting to the destination [7]. The used heuristic can be highly problem
specific. For instance, for a game map that is abstracted by a square grid that allows four
directions of movement, the heuristic that can be used is the Manhattan distance. For a
square grid that allows 8 directions of movement, the Diagonal distance can be used [7].
A* algorithm has several beneficial properties as described below [3]:

1. A* is guaranteed to find a path from the starting node to the destination node, if
a path exists.

2. If the heuristic is admissible, the found path will be the optimum one.

5

3. A* makes the most efficient use of the heuristic which means that no other search
method exists that uses the same heuristic function to find an optimum path ex-
amining fewer nodes than A*.

Although A* is relatively straight forward to implement and has a good performance
characteristic, the overall execution time depends on the problem size and complexity [8].
For instance, in a rectangular grid of 100 x 100, in order to find a diagonal path, the
traditional A* algorithm must at least explore 513 nodes [7]. The biggest drawback of
the A* algorithm is its need to have global knowledge to operate as well as the response
time being the same as the overall time. This is because the overall solution needs to be
known before an agent can start moving [8].

The next section details a variation of A*, the Windowed Hierarchical Cooperative
A* (WHCA*) algorithm, which is used when it comes to directing several agents to their
destinations. The main emphasis would be on the operating mechanism of WHCA* as
well as areas for potential improvement.

2.1.1.2 Windowed Hierarchical Cooperative A* Algorithm

Even though the classic A* algorithm can route a single agent to its destination, multi-
agent pathfinding has to be used when dealing with multiple agents. This thesis will be
briefly looking at a variation of the A* called Windowed Hierarchical Cooperative A*
(WHCA*), which accommodates multi-agent pathfinding. Windowed Hierarchical Coop-
erative A* combines several different ideas to achieve efficient cooperative pathfinding.
The main aspects of WHCA* are as follows:

• Agent hierarchy - One of the important aspects of WHCA* is agent ordering. An
agent is chosen, randomly or depending on a pre-arranged order and is given priority
over other agents to plan its path. This priority title is varied dynamically to allow
each agent to have the highest priority for the shortest possible time. Thus, this
approach can provide solutions to navigation problems which otherwise would be
impossible using a fixed agent ordering [4].

• Reservation table - The reservation table is shared among all of the agents and
holds the path information for each of them. For instance, the agent with the
highest priority places or reserves the nodes of its path in the reservation table.
Any subsequent agent will check the nodes on their respective path against the
reservation table. If the node is already on the reservation table, it is skipped as
that node cannot be reached [6]. Once all the agents reach the end of their path,
the reservation table is cleared.

• Windowing - Windowing is the limiting of the path length of the involved agents.
Using the reservation table, the cooperative pathfinding can be done relatively
efficiently. Nonetheless, as multiple units interact with each other, the initial cost
of resolving all conflicts can become restrictively large [6]. This, however, can be
mitigated by limiting or windowing the search depth. Each agent searches for a
partial route to its destination and begins to follow that path. At regular intervals,
the window is shifted forward and a new partial route is calculated [4].

6

The efficiency of the WHCA* depends on the size of the used window. A smaller
window will require the least initialization cost but the algorithm needs to reroute
the agents more frequently. A larger window must calculate a large section of the
path but with less reroutes. Generally, window sizes of 8, 16 and 32 are used [4].

The pseudo-code for the Windowed Hierarchical Cooperative A* algorithm is as follows
[9]:

Algorithm: Windowed Hierarchical Cooperative A*

1. Reset reservation table

2. While some agents are not at their goal

(a) For each agent

i. Calculate Path (Using A*)

ii. Reserve first W steps

(b) For each agent in parallel

i. Move agent K steps

(c) Reset reservation table

The approach presented by the Windowed Hierarchical Cooperative A* algorithm
improves the original A* paradigm significantly. WHCA* allows multiple agents to reach
the destination cooperatively by reducing the number of potential collisions that can
occur. It also limits the number of nodes that needs to be searched by windowing the
search space. However, WHCA* still suffers from the biggest drawback inherent to the A*
approach which is the need for global information. In other words, the algorithm needs
to know the complete windowed path before it can start to move the agent. WHCA*
will have to compute and store the graph for each of the agents, making this approach
computationally complex. When a large number of agents needs to be directed across a
complex video game map, the computational strain imposed on hardware is substantial.

In addition, the agents in a video game take a certain amount of time to reach their
destinations and much can occur in the game world during this time. For instance,
dynamic changes to the map such as an mobile object blocking the previously calculated
path can occur making the path obsolete. In such a case, the agent would have to
recalculate all or part of its path [10].

Thus, A* based approaches will not be discussed further in this thesis due to the
above limitations. The proposed solution aims to overcome the need for the availability
of global information while being more suitable for a dynamic game map.

The next section is dedicated to describing the classic PSO algorithm and its workings.
This section would act as the foundation to support the notion that a PSO based approach
can act as a viable video game pathfinding solution.

7

2.2 Classic Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) was introduced in 1995 by James Kennedy, a social
psychologist and Russell Eberhart, an Electrical Engineer. Initially, PSO was proposed
as a method to simulate a simplified social model. However, it was discovered that this
method can be used for optimization of continuous nonlinear functions [11].

PSO has its beginnings in two main component methodologies. The more obvious
connection that can be associated with PSO is its ties to artificial life (A-life) in general,
such as fish schooling and birds flocking. Nevertheless, it is also related to evolutionary
computation and has ties to genetic algorithms and evolutionary programming [11]. These
relationships will not be discussed in detail in this thesis. PSO, as described by its authors,
encompass a very simple concept and paradigms that can be implemented with only a
few lines of code. The PSO algorithm only employs primitive mathematical operators
and is computationally inexpensive in terms of memory requirements and speed [11].

In PSO paradigm, the entities of the population, which are known as particles, are
dispersed across the search space of some problem or function and each member evaluates
the objective function at its current location. The search space represents the set of
solutions to the used fitness function. Subsequently, each particle then determines its
movements through the search space by combining some element of the history of its
best found position, with those of the members of the swarm along with some random
perturbations. Eventually, the swarm as a whole, similar to a flock of birds foraging for
food, is likely to move closer to an optimum solution of the fitness function [12].

PSO is more than just a collection of particles. A particle, by itself, has almost no
power to solve any problem. The optimization progress only occurs through particle
interaction. Hence, problem solving is a population-wide phenomenon, emerging from
individual behaviors of the particles through their interactions with each other [12].

According to the authors, the term particle was selected as a compromise. It could be
argued that members of the population are mass-less and volume-less, and thus could be
referred to as points. However, it was decided that velocities and acceleration can more
appropriately be attributed to particles, even when they are defined to have arbitrarily
small mass and volume [11].
The classic Particle Swarm Optimization algorithm is as follows [13]:

Algorithm: Particle Swarm Optimization

1. Initialization
Set the population array of particles with random positions and velocities on D
dimensions in the search space

2. For each particle, evaluate the desired optimization fitness function in D variables

3. Compare the particle’s fitness evaluation with its pbest. If the current value is better
than the pbest, then set pbest equal to the current value.

4. Identify the particle in the swarm with the best success so far and assign that value
to gbest.

5. Change the velocity and position of the particle according to equation 2 and 3

8

V (t+ 1) = v(t) + φ1ξ1[gbest − p(t)] + φ2ξ2[pbest − p(t)] (2)

P (t+ 1) = p(t) + v(t+ 1), (3)

where φ1 and φ2 are spring constants with φ1 = φ2 =2, ξ1 and ξ2 are uniformly
distributed random variables between 0 and 1 and gbest is the global best position
of the swarm while pbest is the personal best position of each particle.

6. If the stopping criterion (a good fitness value) is met or the maximum number of
iterations have been reached, Stop. If not, go to step 2.

The current position p(t) can be considered as a set of coordinates describing a point
in the search space. On each iteration of the algorithm, the current position will be
evaluated as a potential solution by all the particles. If the current position is better
than any position that has been previously found, then its coordinates are stored as the
pbest or personal best by each particle. This pbest value will be used for comparison in
future iterations. Each particle communicates with others in the swarm and determines
the current best position that has been found by any particle in the population. These
coordinates will be stored as gbest or global best. The ultimate objective is to keep finding
better solutions and update p(t). New points are chosen by adding the velocity vector
v(t+ 1), which can be effectively seen as the step size, to the current position p(t) [12].

With the use of gbest and pbest, the PSO algorithm achieves in finding a better position
with each iteration. The vector v(t+ 1) is the addition of three vectors, the inertia term
v(t), self confidence h(t) and swarm confidence g(t). In other words, each particle is
steered towards a position which is in the direction of the resultant vector v(t+ 1).

The effect of each of these vectors on the particle are as follows:

• The inertia term forces the particle towards the direction it was currently heading.

• The swarm confidence steers the particle towards the direction which has the
swarm’s currently best found position.

• The self confidence drives the particle towards the direction of the currently best
found position of the particle itself.

Thus, in the PSO paradigm, the resultant vector of these three vectors should result in
a better optimized position [13]. With each iteration of the PSO algorithm, the particles
will move towards the target position. This serves as the main foundation for selecting
a PSO based approach for the LoS algorithm. In addition, video game pathfinding
movements needs to be visually appealing. In other words, not many players would
rally to play a game that display contrived or mechanical movements. PSO, however,
presents an elegant model that can exhibit lively and seamless movements. Moreover,
as discussed previously, PSO only employs simple mathematical operations. Therefore,
it is computationally inexpensive in terms of memory requirements and speed which is
of monumental importance when it comes to video game AI. Hence, PSO presents itself
as an excellent candidate that can be successfully utilized as a pathfinding algorithm in
video game context.

9

2.3 Summary

In this chapter, existing video game pathfinding algorithms were discussed. The A*
and the WHCA* algorithm, which is a descendant of A*, were presented in detail. The
drawbacks of the existing algorithms such as the need for global information and having
to compute and store the graph for the agents were elaborated.

Next the classic PSO algorithm was explained. The inception, mechanics and the
inner workings were given in detail. The chapter then delved into the requirements of
a video game pathfinding algorithm such as the need to be visually appealing while
performing efficiently. Finally, the reasons for selecting PSO as a video game pathfinding
algorithm was discussed as it provides an elegant and efficient movement model.

The following chapter will explore the proposed NPC navigation solution. The inner
working of the algorithm as well as the intuition and reasoning behind it will also be
discussed. The main emphasis would be on its ability to direct agents in the presence of
obstacles using local knowledge.

10

Chapter 3

PROPOSED SOLUTION

In this chapter we propose a general mechanism for NPC navigation. The presented
algorithm will direct an agent to a LoS position to the target destination when NLoS
can be established due to the presence of obstacles. The proposed method achieves this
by only taking into account local knowledge. In other words, it only needs to know the
position of the target to operate.

3.1 NLoS Algorithm

In general, NPC pathfinding needs to be implemented when there is no LoS to the target
destination. We denote the non LoS situation as NLoS. NLoS mainly exists due to
obstacles in the search area of the agent. When there is NLoS, it is clearly noticed that
the implementation of NPC pathfinding is challenging. The reason for such a difficulty
can technically be explained by the fact that the search area of the agent becoming
nonconvex. In the rest of this section, we propose an algorithm which can be used to
implement NPC pathfinding, even in a NLoS situation using local knowledge.

3.1.1 Reasoning Behind the Proposed Solution

The key idea of our algorithm is based on that, a stream of water is guaranteed to flow in
the direction of gravity. More specifically, irrespective of the starting point A of the water
stream, it reaches a point E, which has a line of sight to any specified target destination
D, as long as the orientation of the landscape ensures that D is at a lower height than A

and there exists a path connecting A and D. The idea is illustrated in Figure 3.1(a), where
g denotes the direction of gravitational force.

When applying the above idea to the dynamics of the agent’s movement towards the
destination, we require

• Water-Filling: an obstacle reshaping mechanism, which resembles the water-filling
depicted in Figure 3.1(a) until an exit point is discovered.

At the exit point, we require

• moving along the boundary of the obstacle, followed by a vertical drop in the
direction of g until another obstacle is encountered.

11

(a) (b)

Figure 3.1: Reasoning behind the idea: (a) Flow of a water stream originated at A to
point E. ; (b) Coordinate system.

The two steps above are to be iterated until LoS between the agent and the target is
established. 1

3.1.2 Notations and Definitions

Let us define some notations to improve the clarity of the algorithm presentation. The
map on which the agents and the target reside is assumed to be a rectangle, without
loss of generality 2. The lower left corner of the rectangle is considered the origin. The
standard basis vectors [1 0]

ᵀ
and [0 1]

ᵀ
in IR2 are used when defining the coordinates

x and y, respectively. This can be seen more clearly in Figure 3.1(b). We denote by
xA = [xA1 x

A
2] ∈ IR2 the location of the agent and by xD = [xD1 x

D
2] ∈ IR2 the location of

the target. Note that, based on the considered coordinate system, we have g = [0 − 1]
ᵀ
.

Without loss of generality, we assume (xD− xA) = αg for some positive α 3 which can be
compared with the coordinate system in Figure 3.1(b).

It is assumed that there are p non-overlapping obstacles inside the rectangle. These
obstacles are modelled with compact sets, denoted by Oi, i = 1, . . . , p. The boundary
of the rectangle, itself is denoted by Op+1. Furthermore, we denote by Bε(x) the ball of
radius ε > 0, centered around x. More specifically, we have

Bε(x) = {y | ||x− y||22 < ε}. (4)

This is illustrated in Figure 3.2.
Next we will introduce some definitions that would aid the comprehension of the

proposed algorithm. These would be crucial when explaining the steps of the presented
algorithm.

1Given there is LoS, the algorithms discussed in Chapter 4 can takeover.
2Any arbitrary shaped map can be enclosed inside a rectangle by appropriately defining more ob-

stacles to resemble the original map.
3Otherwise, all the obstacles together with the agent and the target can be rotated with coordinate

system being fixed to yield the required alignments pointed.

12

Figure 3.2: Ball

Definition 1 (Slab) The slab of thickness εw, originated at y in the direction of r =
[d 0]

ᵀ
, d ∈ IR, is given by

S(y, r, εw) = {x | [0 1]x ≥ [0 1]y, [0 1]x ≤ [0 1]y + εw, r
ᵀ
x ≥ r

ᵀ
y}. (5)

Figure 3.3 represents the concept of Slab.

Figure 3.3: Slab

Definition 2 (Exit Set) For an obstacle O, an agent location xA, a direction r = [d 0]
ᵀ
,

d ∈ IR, and εw > 0, the Exit Set is given by E(O,xA, r, εw) = {y | O ∩ S(xA, r, εw)} \
xA. Alternatively, we let E(O,xA, r, εw) = {S1, . . . ,Sn}, where Si, i = 1, . . . , n are the
elements of the Exit Set, numbered in the order they appear, as we move from xA along
the direction of r.

Definition 3 (Exit Point) Given an Exit Set E(O,xA, r, εw) = {S1, . . . ,Sn} for an ob-
stacle O, an agent location xA ∈ bd(O), and positive εw, with r = [d 0]

ᵀ
, d ∈ IR, we say

e ∈ S1 is an Exit Point if the half-space {x | a
ᵀ
x ≤ a

ᵀ
e}, with a = [0 1]

ᵀ
, contains the

set Bε(e) ∩ O for some ε > 0.

The concepts Exit Set and Exit Point are better in explained in Figure 3.4. In this
scenario, two instances of Exit Sets are given. Out of the provided Exit Sets, the existence
of Exit Points are investigated.

In Figure 3.4(a), using the Slab originating at xA, the Exit Set is found which contains
elements S1 and S2. Figure 3.4(b) shows a close up of the Exit Set with the half-space
{x | aᵀ

x ≤ a
ᵀ
e}, with a = [0 1]

ᵀ
. However, it can be seen that for the element S1 in Exit

13

(a) (b)

(c) (d)

Figure 3.4: Illustrations of Exit Sets and Exit Points: (a) Exit Set 1. ; (b) Close up of
Exit Set 1. ; (c) Exit Set 2. ; (d) Close up of Exit Set 2.

Set, the half-space {x | aᵀ
x ≤ a

ᵀ
e} does not contain the set Bε(e) ∩ O for some ε > 0.

Hence, S1 is not an Exit Point.
Figure 3.4(c) shows another instance of an Exit Set found using the Slab originating at

xA. A close up of the Exit Set is given in Figure 3.4(d) with the half-space {x | aᵀ
x ≤ a

ᵀ
e}.

In this situation, the half-space {x | aᵀ
x ≤ a

ᵀ
e} contains the set Bε(e) ∩ O for element

S1 in Exit Set. Thus, S1 is an Exit Point.

Definition 4 (Upper Right Orthant) Upper Right Orthant denoted CR is the set of
points of the upper-right quadrant of the coordinate system, i.e.,

CR = {x ∈ IR2 | x = [x1 x2]
ᵀ
, x1 ≥ 0, x2 ≥ 0}. (6)

14

Definition 5 (Upper Left Orthant) Upper Left Orthant denoted CL is the set of points
of the upper-left quadrant of the coordinate system, i.e.,

CL = {x ∈ IR2 | x = [x1 x2]
ᵀ
, x1 ≤ 0, x2 ≥ 0}. (7)

Definition 6 (Translated Upper Right Orthant) Translated Upper Right Orthant
denoted CR(x), is given by

CR(x) = x + CR, (8)

where x is the translation introduced.

Figure 3.5 illustrates the Translated Upper Right Orthant.

Figure 3.5: Translated Upper Right Orthant

Definition 7 (Translated Upper Left Orthant) Translated Upper Left Orthant de-
noted CL(x), is given by

CL(x) = x + CL, (9)

where x is the translation introduced.

The Translated Upper Left Orthant is shown in Figure 3.6.

Figure 3.6: Translated Upper Left Orthant

15

Definition 8 (Irregular Points) Given a point y = [y1 y2]
ᵀ
, let Hy = {x | [1 0]x =

y1}. The point y is called irregular, if for some v ∈ Iy = {x | Hy ∩ (bd(O1) ∪ · · · ∪
bd(Op))}, the hyperplane {x | gᵀ

x = g
ᵀ
v} and y intersect only at y itself.

Next we will look at the proposed algorithm. An explanation of the algorithm will
also follow for improved clarity.

3.1.3 LoS by Water-Filling

This section will present the actual steps of the NLoS algorithm, which will be named
as LoS by Water-Filling. The previously described notations and definitions will be used
wherever needed.
The algorithm for LoS setup by Water-Filling and G-drops can be summarized as follows:

Algorithm: LoS by Water-Filling

1. Let the iteration index k = 0, xA
k denote the current (non irregular) position of

the agent, εw denote the water-filling level in one chance, r = [1 0]
ᵀ
sh denote the

horizontal step length of the agent in one chance, and sv denoted the vertical step
length of the agent in one chance.

2. If LoS is established between xA
k and xD, Stop. Otherwise to go to Step 3.

3. If xA
k ∈ bd(Oi?) for some i? ∈ {1, 2, . . . , p}, go to Step 4. Otherwise, make a vertical

drop, i.e., set
xA
k+1 : = xA

k + svg, (10)

set k : = k + 1 and go to Step 2.

4. Compute Sk from Sk = Bε(xA
k) ∩ Oi? . If the half-space {x | − g

ᵀ
x ≤ −g

ᵀ
xA
k},

contains the set Sk go to Step 9. Otherwise, go to Step 6

5. If a
ᵀ
xA
k ≥ a

ᵀ
xA
k−1, with a = [1 0]

ᵀ
, make a right horizontal step, i.e., set

xA
k+1 : = xA

k + sh[1 0]
ᵀ

(11)

and k : = k + 1. Otherwise, make a left horizontal step, i.e., set

xA
k+1 : = xA

k − sh[1 0]
ᵀ

(12)

and k : = k + 1. Go to Step 3.

6. If Sk ∩ CR(xA
k) = ∅ and Sk ∩ CL(xA

k) 6= ∅, make a right horizontal step, i.e., set

yA
k : = xA

k + sh[1 0]
ᵀ
, (13)

set xA
k+1 to the projection of yA

k onto the obstacle Oi? along g, k : = k + 1, and
compute Sk from Sk = Bε(xA

k) ∩ Oi? , and go to Step 7. Otherwise, go to Step 8.

7. If
(
Sk−1 ∩ CR(xA

k−1) = ∅ and Sk ∩ CL(xA
k) = ∅

)
or
(
Sk−1 ∩ CL(xA

k−1) = ∅ and Sk ∩
CR(xA

k) = ∅
)
, go to Step 9. Otherwise go to Step 6.

16

8. If Sk ∩ CR(xA
k) 6= ∅ and Sk ∩ CL(xA

k) = ∅, make a left horizontal step, i.e., set

yA
k : = xA

k − sh[1 0]
ᵀ
, (14)

set xA
k+1 to the projection of yA

k onto the obstacle Oi? along g, k : = k + 1, and
compute Sk from Sk = Bε(xA

k) ∩ Oi? , and go to Step 7. Otherwise go to Step 9.

9. In the directions r and −r, check for an Exit-Point by using the Exit Set

E(Oi? ,xA
k, r, εw) = {S1, . . . ,Sn}.

If an Exit-Point exists, set xA
k+1 to the Exit-Point, k : = k + 1, and go to Step 5.

Otherwise, go to Step 10.

10. Increase water level by a height εw. Set xA
k+1 to an end point of the water line and

set k : = k + 1. Go to Step 9.

Step 1 initializes the algorithm by setting the iteration index k to zero. Current
position of the agent xA

k, water-filling level in one chance εw, horizontal step length of
the agent in one chance sh and vertical step length of the agent in one chance sv are
also denoted in this step. The starting position is assumed to be a non irregular point
to avoid certain technicalities. In simple terms, this checks whether the starting position
is already an Exit Point. In reality, this assumption is almost always satisfied since it is
highly unlikely that the starting position of the agent is an Exit Point on the obstacle.

Step 2 checks to see if line of sight can be established between the agent and the target
destination. If LoS can be established, the algorithm stops and the LoS algorithm takes
over. If LoS cannot be established, the algorithm moves to Step 3.

Step 3 checks to see if the current position of the agent xA
k is at a boundary of an

obstacle. If so, the algorithm advances to Step 4. If the current position of the agent
xA
k is not at an obstacle boundary, the agent is dropped a vertical step sv, the iteration

number k in incremented by one and the algorithm reverts back to Step 2.
Step 4 computes Sk which is the intersection of the obstacles and the ball centered

around xA
k. If the the half-space {x | − g

ᵀ
x ≤ −g

ᵀ
xA
k} contains the set Sk, we move to

Step 9. This essentially checks if the agent is already at an Exit Point. If this check fails,
the algorithm skips to Step 6.

Step 5 is initiated when an Exit Point has been identified. This step checks the
previous iteration agent position xA

k−1 with the current agent position xA
k and directs the

agent accordingly. If a
ᵀ
xA
k ≥ a

ᵀ
xA
k−1, with a = [1 0]

ᵀ
, the agent’s previous position xA

k−1

was to the left of the current position xA
k. In other words, the agent has moved to its right

in the previous iteration. Thus, it will be moved a sh step to the right in this iteration as
well. The same process follows if a

ᵀ
xA
k ≤ a

ᵀ
xA
k−1, with a = [1 0]

ᵀ
as well, but the agent

will be moved a sh step to the left. After the movement, k is incremented by 1 and the
algorithm restores to Step 3.

Step 6 checks to see if the Sk intersects with the Translated Upper Left Orthant and
Translated Upper Right Orthant. If the condition (Sk ∩CR(xA

k) = ∅ and Sk ∩CL(xA
k) 6= ∅)

is true, the obstacle is to the left of the agent position xA
k. In that case, the agent is

moved to the right along the boundary of the obstacle Oi? in a direction of yA
k projected

along g. The iteration number k in increased by one, Sk is calculated at new current
position and the algorithm moves to Step 7. If this condition is false, we skip to Step 8.

17

Step 7 essentially checks the agent’s current position xA
k is at a valley along the

obstacle boundary. This is done by checking if the condition
(
Sk−1 ∩ CR(xA

k−1) = ∅ and
Sk ∩ CL(xA

k) = ∅
)

or
(
Sk−1 ∩ CL(xA

k−1) = ∅ and Sk ∩ CR(xA
k) = ∅

)
is true. If either of the

above statements are true, the agent’s current position xA
k is at a valley on the obstacle

boundary. In that case, the algorithm skips to Step 9. If the agent is not at a valley
position, we go back to Step 6.

Step 8 is very similar to Step 6. However, instead of checking if the obstacle is to the
left of the agent’s position xA

k, it checks the condition (Sk∩CR(xA
k) 6= ∅ and Sk∩CL(xA

k) = ∅)
to check the right of the agent’s position. If this condition is true, the agent is moved
to the left along the boundary of the obstacle Oi? in a direction of yA

k projected along
g. The iteration number k in increased by one, Sk is calculated at new current position
and the algorithm moves to Step 7. In the case that the above condition is false, the
algorithm goes to Step 9.

Step 9 checks for an Exit Point using the Exit Set

E(Oi? ,xA
k, r, εw) = {S1, . . . ,Sn}

in the directions r and −r. If an Exit Point is found, the next position of the agent xA
k+1

is set to the Exit Point. The iteration number k is incremented by 1 and we revert back
to Step 5. If an Exit Point is not found, we advance to Step 10.

In Step 10, the water level is increased by a height εw and the next position of the
agent xA

k+1 is set to an end point on the water line. The iteration number k is incremented
by 1 and the algorithm goes back to Step 9.
A flowchart depicting the condensed steps of the LoS by Water-Filling algorithm is given
below in Figure 3.7.

18

Start

If LoS Stop

Vertical drop until agent at
obstacle boundary

At
Obstacle

Boundary?

Compute Sk

Exit
Point?

xA
k at

right of
previous
position?

Right Shift Left Shift

Moving along boundary of
obstacle and calculate Sk

Searching for Exit Points
and water filling

Yes

No

No

Yes

Yes

No

Yes

No Valley found

Valley found
No Exit Point

No

Exit Point found

Figure 3.7: Flowchart of LoS by Water-Filling algorithm

19

3.2 Summary

In this section, a novel pathfinding algorithm named LoS by Water-Filling was proposed
that can navigate agents, from a start position to a target destination, in the presence
of obstacles, using local knowledge. The key idea and the reasoning behind the proposed
solution was also discussed. The notations, definitions as well as the steps of the algorithm
were explained in detail. LoS by Water-Filling is the NLoS algorithm that navigates the
agents to a LoS position when obstacles are present.

In the subsequent chapter, we explore the candidates for the LoS algorithm. It will
detail the inner workings and the mechanics of each of the algorithms. This will essentially
serve as the foundation for selecting one of the algorithms for the LoS approach.

20

Chapter 4

LoS ALGORITHMS

This chapter deals with instances where line of sight (LoS) can be established between
the agent and the target destination. Four candidates for the LoS problem are presented.
All of the submitted candidates have their roots in the classic PSO algorithm. It should
also be noted that the algorithms explained in this chapter are from existing literature.
First, we will look into the concept of the Constriction Coefficient χ.

4.1 Constriction Coefficient

Each of the LoS algorithms have subtle differences when compared with each other but
the one commonality they share is the use of the Constriction Coefficient χ. When the
PSO algorithm is run without placing any velocity restraint, the velocities tend to increase
to unacceptable levels within a few iterations. This, in turn can be harmful to the overall
performance of the algorithm since it will cause the particles not to converge, even after
the most optimum position has been found [12]. Hence the Constriction Coefficient χ
is needed to mitigate the effect of these wayward velocities as the number of iterations
increase.

The Constriction Coefficient χ proposed in [14] is applied as follows:

Vi+1 = χ[Vi + U(0, φ1)(pi − xi) + U(0, φ2)(pg − xi)] 1 (15)

xi+1 = xi + Vi+1, (16)

where φ = φ1 + φ2 > 4 and

χ =
2

φ− 2 +
√
φ2 − 4φ

(17)

In this method φ is normally set to 4.1 where φ1 = φ2 and the Constriction Coefficient
χ is calculated to be approximately 0.7298. As a result of χ, the previous velocity of the
particle is multiplied by the constant 0.7298 and while the two (pi-xi) terms are multiplied
by a random number that has a maximum value of 1.49618 [12]. The Constriction
Coefficient χ is added to the PSO paradigm to ensure convergence of the algorithms.

The subsequent sections will detail out each of the LoS algorithms and their operating
mechanisms. Firstly, a simplified deterministic PSO model without particle interaction

1U(0,φi) depicts a vector of randomly generated numbers uniformly distributed in [0,φi] at each
iteration for each particle.

21

and constant springs will be considered and then components such as particle interaction
and random springs are gradually introduced. It should be noted that without particle
interaction optimization does not occur. In order to achieve optimization, interactions
need to be incorporated into the model so that knowledge regarding a better position
found by one particle can be communicated across the swarm [15]. The analysis of the
different approaches form the basis for the selection of a LoS algorithm from the presented
candidates.

4.2 PSO Version 1 without Particle Interaction and

Constant Springs

This version does not take into account particle interaction and has a fixed spring con-
stant. It essentially serves as a simplified PSO model that provides a better understanding
of its inner workings. The model can be summarized as the following dynamic system [15]

v(t+ 1) = v(t) + φ[p− x(t)] (18)

x(t+ 1) = x(t) + v(t) + φ[p− x(t)].

Since there is no particle interaction, the attractor term (pi−x(t)) is fixed to (p−x(t))
and the spring constant is set to φ.

After applying velocity constriction the v(t+ 1) is scaled by χ < 1:

v(t+ 1) = χ{v(t) + φ[p− x(t)]} (19)

x(t+ 1) = x(t) + χ{v(t) + φ[p− x(t)]}

The given below convergence proof for this system directly follows what has already
been discussed in [14] and [15].
The system can be rewritten as

v(t+ 1) = χ{v(t) + φ[y(t)]} (20)

y(t+ 1) = y(t) + χ{−v(t)− φ[y(t)]},

or in matrix form as

P (t+ 1) = MP (t), (21)

where y(t) = p − x(t), P (t) = [v(t), y(t)]T and M is the 2 x 2 transformation matrix
defined by the matrix equation[

v(t+ 1)
y(t+ 1)

]
=

[
χ χφ
−χ 1− χφ

] [
v(t)
y(t)

]
. (22)

M is diagonalized by the similarity transform A.

AMA−1 = L =

[
e1 0
0 e2

]
(23)

22

Remark 1 The convergence conditions for χ and φ are obtained by noting that ‖P (t)‖
increase as ‖M tP (0)‖ = ‖LtAP (0)‖ where ‖.‖ is, for example, the Euclidean norm. It is
shown in [14] that the eigenvalues e1,2 are complex and of modulus

√
χ for φ > 4, with

χ given by

χ =
2

φ− 2 +
√
φ2 − 4φ

(24)

Proof 1 Convergence will follow if the constriction factor for a given spring constant is
given by Eq. 24.

We will be choosing PSO Version 1 as the solution to the LoS problem defined above.
This will be better explained in Chapter 5, RESULTS and DISCUSSION. It should also
be noted that PSO Version 1 is a simplified model of the classic PSO algorithm. In
the subsequent sections, we incorporate stochasticity and particle interaction into this
simplified model.

4.3 PSO Version 2 without Particle Interaction and

Random Springs

The version explained in this section is without particle interaction but with random
springs. When random springs are used, ξi is a randomly generated number at each
iteration for each particle uniformly distributed in [0,1].
The system can be summarized as follows:

v(t+ 1) = χ{v(t) + φξi[p− x(t)]} (25)

x(t+ 1) = x(t) + χ{v(t) + φξi[p− x(t)]}
When the springs are randomized, we reintroduce stochasticity to the model. The

effect of this randomness on the system is significant [14]. However, exploring the effect
of randomness on the PSO paradigm is beyond the scope of this thesis and will not be
discussed further. In the next section, we encompass particle interaction into the model.

4.4 PSO Version 3 with Particle Interaction and Con-

stant Springs

The version given here incorporates particle interaction into the simplified model de-
scribed in PSO Version 1. Since particle interaction is available in this model, it is
capable of achieving optimization. However, the springs ξ1,2 are kept at a constant value.
A succinct representation of PSO Version 3 is as follows:

v(t+ 1) = χ{v(t) + φ1ξ1[pi − x(t)] + φ2ξ2[pg − x(t)]} (26)

x(t+ 1) = x(t) + χ{v(t) + φ1ξ1[pi − x(t)] + φ2ξ2[pg − x(t)]}
Personal influence and global influence which are two of the most important aspects in

the PSO paradigm are included in this version. In other words, particles are affected by
their personal experience as well as the experience of the swarm as a whole. The following
section will detail the complete PSO model with particle interaction and stochasticity.

23

4.5 PSO Version 4 with Particle Interaction and Ran-

dom Springs

The PSO Version 4 described here embraces the concepts of particle interaction and
random springs. Essentially, this can be considered as the classic PSO algorithm with
the constriction coefficient χ added to ensure convergence.
The velocity and position update rules for the system is

v(t+ 1) = χ{v(t) + φ1ξ1[pi − x(t)] + φ2ξ2[pg − x(t)]} (27)

x(t+ 1) = x(t) + χ{v(t) + φ1ξ1[pi − x(t)] + φ2ξ2[pg − x(t)]},

where φ1,2 are commonly set to 2.05 and ξ1,2 are randomly generated numbers uniformly
distributed in [0,1].

4.6 Summary

Effectively, four PSO versions that are based on existing literature were discussed as po-
tential candidates for the LoS problem. The discussion started with a simplified PSO
model without particle interaction and stochasticity. As the chapter progressed, particle
interaction and stochasticity was slowly reintroduced into the simplified model. Never-
theless, PSO Version 1 without Particle Interaction and Constant Springs was selected
for the LoS approach due to its simplicity and guaranteed convergence. This will be
explained in more detail in Chapter 5, RESULTS and DISCUSSION. PSO Versions 2-4
will not be discussed further in this thesis.

In the next chapter, we will explore the simulation results of a modified version of the
LoS by Water-Filling algorithm that captures its essence as well as the LoS algorithms.
The simulation results for the LoS algorithms will provide the reasoning for selecting
a candidate for the LoS situation. In addition, the steps that needs to be taken when
implementing the LoS by Water-Filling algorithm in a real video game environment will
be explored.

24

Chapter 5

RESULTS and DISCUSSION

This chapter is dedicated to the results and the discussion relating to the proposed
solution. A brief description about the employed testing environment will also be given.
The chapter will also delve into the challenges and issues that needs to be addressed when
implementing the proposed solution in a real gaming environment.

First, we will provide a succinct explanation regarding the testing environment. Ex-
cerpts and screenshots relating to the gaming environment has been given wherever pos-
sible.

5.1 Testing Environment

The testing of the proposed algorithm was carried out using GameMaker: Studio(GMS)
which is a proprietary game creation system created by Mark Overmars. GameMaker:
Studio allows the creation of game maps, which are referred to as rooms within GMS,
sprites for the in-game agents and scripts which can be used to model the behavior of
these agents. All of the algorithms were coded using the native GMS scripting language,
GameMaker Language (GML) which is syntaxically similar to JavaScript. Figure 5.1
shows an excerpt of the code that was used.

Figure 5.1: GameMaker Language

Generally, information relating to video game geometry are stored in a structure
referred to as a map [16]. The following section provides details regarding the map
structures that were used for the simulations.

25

5.1.1 Employed Video Game Map

The size of the used maps is 768 x 512 which consists of 393,216 pixels. A 24 x 16 grid was
then constructed with a cell size of 32 x 32 to be superimposed over the game map. The
topology of the map contains open cells that can be traversed as well as untraversable
closed cells that serve as obstacles. A sample GMS map is shown below in Figure 5.2.

Figure 5.2: GameMaker: Studio sample map

The White cells are traversable areas while the Black cells play the role of obstacles.
These maze-like environments play the role of game maps for the upcoming simulation
results. Movement criteria which is another important aspect of video game pathfinding
will be discussed next.

5.1.2 Movement Criteria

Movement criteria of the agents in the video game plays a vital role when it comes to
agent pathfinding. Certain game environments allow only four degrees of freedom of
movement while others may support up to 8 or more. In this thesis, the constructed grid
in the simulation environment allows 8 directions of movement. Figure 5.3 illustrates the
allowed directions in the grid.

Figure 5.3: Allowed movements in the grid

26

If the Orange cell is the starting position of an agent, the Purple cells represent the
cells that the agent can move into next. The simulation environment of this thesis employs
2D Square (Octile) grids with each center cell bordering eight neighbour cells.

The movement criteria given here imposes certain limitations when implementing the
LoS by Water-Filling algorithm in a real video gaming environment. In the LoS by
Water-Filling algorithm, there are no restrictions on the direction in which the agent can
travel. For instance, if the agent needs to travel on a direction of 30 degrees from North,
it would be difficult to implement in GameMaker: Studio due to allowed directions being
multiples of 45 degrees from North. Due to this reason, we provide a simulation for a
modified version which captures the essence of the LoS by Water-Filling algorithm.

The subsequent section presents the results that were gathered from the simulations.
Based on the results and observations, a discussion will follow regarding the proposed
solution. Moreover, the steps that need to be taken when the solution is applied to a real
gaming environment will also be explored.

5.2 Results and Discussion

This section deals with the results of the simulations of the modified implementation of
the NLoS algorithm, LoS by Water-Filling and the LoS algorithms. The results will be
in the form of each agent’s distance to target against the number of iterations of the
algorithm. The measured distance is the Euclidean distance or the L2 norm and is given
in pixels.

5.2.1 LoS by Water-Filling Algorithm Applied in a Real Video
Gaming Environment

In this section, we explore how the LoS by Water-Filling algorithm can be applied in a
real video gaming environment. The game map that will be used for the explanation is
given below in Figure 5.4.

Figure 5.4: LoS by Water-Filling implemented in GMS

Position A denotes the start point of the agent and position D is the destination.
Position E is the first line of sight position that the agent will encounter while position 6

27

serves as an exit point. It is evident from the start that the agent cannot establish line of
sight to the destination D from its start point A. Thus, it will essentially employ the LoS
by Water-Filling algorithm to navigate itself to the line of sight position E. Next, let’s
run through the steps of the algorithm for this game map.

Since the agent cannot establish line of sight between A and D, it will run Step 3
of the algorithm until it reaches the boundary of the obstacle which is given by point
1. Once at point 1, the agent follows Steps 6 and 8 of the algorithm to move along the
boundary of the obstacle while looking for an Exit Point. This is evident in the simulation
where the agent moves to points 2 and 3 looking for an Exit Point. Since an Exit Point
cannot be found along the boundary, the agent navigates to position 4, the middle of
the encountered obstacle. This is in accordance with Step 7 of the algorithm where the
algorithm checks if the agent is at a valley on the boundary of the obstacle. Once at
position 4, the agent employs Step 10 of the algorithm to increase the water level and
goes back to Step 9 to restart the search for an Exit Point. Using a combination of Steps
9 and 10, the agent finds the Exit Point 6. The agent ultimately reaches the Exit Point
at position 6 by first reaching the edge at point 5. At point 5, the agent employs Step 5
of the algorithm which forces the agent to move to the left of its current position.

Once at exit point 6, the agent invokes Step 3 of the algorithm to get to the line
of sight position E by using a series of vertical drops. When the agent reaches line of
sight position E, Step 2 comes into play and the LoS by Water-Filling algorithm ceases.
At this point, line of sight can be established and the LoS algorithm is activated. Now
employing the LoS algorithm, the agent navigates itself to position 7 and ultimately to
the destination point D.

In the subsequent section, the steps described above will be applied to a real video
game environment. Figure 5.5 represents a more complicated game map that deals with
the NLoS situation due to the prevalence of obstacles. It should be noted that the agents
utilize the same steps described here to navigate the obstacles and ultimately converge
on the destination.

5.2.2 LoS by Water-Filling NLoS Algorithm

In this section we look at the quintessence of the LoS by Water-Filling algorithm described
above applied to a more complicated video game map. Due to the previously described
limitations of the simulation environment, a modified version of LoS by Water-Filling
algorithm that captures its essence is implemented here. As previously stated, the NLoS
agent pathfinding is complicated due to the presence of obstacles. This is more clearly
evident in the game map that is used for the simulation which is given in Figure 5.5.

The Purple squares represent in-game agents while the Blue circle, named D, depicts
their destination. In addition, White cells represent traversable area while Black cells
represents obstacles. The number of agents were kept at 10. It can be seen that none of
the agents can establish line of sight to the target position D from their starting positions.
This would mean that they would essentially have to employ the steps given by the NLoS
algorithm, LoS by Water-Filling to reach the LoS position E in the map. The results of
the LoS by Water-Filling algorithm simulation can be found in Figure 5.6.

28

Figure 5.5: Game map for LoS by Water-Filling algorithm simulation

Figure 5.6: NLoS algorithm simulation result

The Figure 5.6 plots the Ki against the number of iterations of the algorithm. Ki is
calculated with Eq. 28,

Ki = min ‖xi − xd‖, i ∈ {1, 2, . . . , j} (28)

where xi is the current position of the agent in this iteration and xd is the target position.
Since none of the agents can establish line of sight from their starting positions to

the destination position D, the NLoS algorithm LoS by Water-Filling takes over. The
objective of this algorithm is to navigate the agents through the obstacles to the LoS
position E. At point E, the agents can establish line of sight with the destination position
D and the LoS algorithm takes over. It can be seen in Figure 5.6 that by using the
proposed solution all of the agents, irrespective of their starting positions have converged
on the target position D.

In the next section, the simulation results for the presented LoS algorithms are ex-
amined. This analysis will aid in selecting an algorithm for the LoS approach.

29

5.2.3 LoS Algorithms

Now we present the simulation results for the LoS algorithms presented in Chapter 4.
In order to achieve better comparable results, all of the algorithms were simulated with
factors such as the game map and the number of agents kept constant. The game map
that was used for this section is shown in Figure 5.7.

Figure 5.7: Game map for LoS algorithm simulations

The Purple squares represent in-game agents while the Blue circle, named D, depicts
their destination. As previously mentioned in the Testing Environment section, White
cells represent traversable area while Black cells represents obstacles. The number of
agents were kept at 10 across all versions of the algorithms.

Since the LoS algorithms take over when there are no obstacles present, this can be
essentially seen as a convergence analysis. Table 5.1 provides the number of iterations
that are needed for each of the LoS algorithms to converge. This table depicts information
for one specific agent across the LoS algorithms, but it should be noted that the results
are similar for other agents also.

30

(a) (b)

(c) (d)

(e)

Figure 5.8: LoS algorithms simulation results: (a) Classic PSO. ; (b) PSO Version 1. ;
(c) PSO Version 2. ; (d) PSO Version 3. ; (e) PSO Version 4.

Table 5.1 demonstrates the number of iterations against the distance to target for each
of the LoS algorithms for one agent 1. The definition of convergence, in this instance,
would be when the agent’s distance to the target has reached zero.

The classic PSO does not exhibit convergence since there is no mechanism to constrict
the velocities as the number of iterations increase. This is evident in column 2 of Table 5.1
where the distance to target never reaches zero. PSO Version 1 converges at around
iteration number 46 while PSO Version 2 converges around iteration 47. PSO Version

1The number of iterations needed for convergence given in Table 5.1 depend on the step size taken
by the agent. Large step sizes will follow faster convergence. Here the maximum step size is limited to
15 pixels.

31

Number of Iterations
Distance to Target (In Pixels)

Classic PSO PSO V1 PSO V2 PSO V3 PSO V4
1 4.45× 102 4.45× 102 4.45× 102 4.45× 102 4.45× 102

10 3.69× 102 3.33× 102 3.33× 102 3.75× 102 3.76× 102

20 2.47× 102 2.26× 102 2.26× 102 2.50× 102 2.59× 102

30 1.61× 102 1.26× 102 1.26× 102 2.43× 102 2.29× 102

40 7.80× 101 2.60× 101 3.40× 101 2.41× 102 2.03× 102

41 6.40× 101 1.60× 101 2.40× 101 2.41× 102 2.01× 102

42 5.10× 101 6.00 1.40× 101 2.40× 102 2.00× 102

44 2.47× 101 3.00 5.00 2.39× 102 2.00× 102

45 1.45× 101 1.00 2.00 2.40× 102 1.99× 102

46 1.45× 101 0.00 1.00 2.39× 102 1.98× 102

47 1.32× 101 0.00 0.00 2.33× 102 1.96× 102

100 1.03× 102 0.00 0.00 2.23× 102 1.12× 102

150 3.48× 102 0.00 0.00 2.10× 102 6.64× 101

200 2.04× 102 0.00 0.00 1.95× 102 1.39× 101

210 2.68× 102 0.00 0.00 1.92× 102 7.07
211 2.68× 102 0.00 0.00 1.92× 102 7.07
242 1.95× 102 0.00 0.00 1.83× 102 1.41
243 2.03× 102 0.00 0.00 1.83× 102 0.00
300 9.29× 101 0.00 0.00 1.67× 102 0.00
400 3.03× 102 0.00 0.00 1.38× 102 0.00

Table 5.1: LoS algorithms: Number of iterations needed for convergence

4 achieves convergence at around iteration number 243. At around iteration number
400, where PSO Versions 1,2 and 4 already have converged, PSO Version 3 still has not
converged. PSO Version 3 will finally converge at around iteration number 893, which
is not displayed in Table 5.1.

Thus, it can be seen that PSO Version 1 would be the best solution for the LoS
problem, mainly due to its simplicity and fast guaranteed convergence. Hence, for our
proposed approach, PSO Version 1 will take over when LoS can be established from the
agent to the target position.

5.3 Summary

In this chapter, we explored the results for the modified implementation of the NLoS
algorithm LoS by Water-Filling and the LoS algorithms. The results are given in the
form of each agent’s distance to target against the number of iterations of the algorithm.
The unit of measurement for the simulations is the Euclidean distance or the L2 norm and
is given in pixels. The modified implementation of the NLoS algorithm LoS by Water-
Filling achieved in directing all of the agents to the destination, irrespective of their
starting position, in the presence of obstacles by employing local knowledge. Moreover,
by analyzing the results of the LoS algorithm simulations, we selected PSO Version 1
without Particle Interaction and Constant Springs as the candidate for the LoS situation.
This was due to its simplicity and fast guaranteed convergence.

32

By examining the results, the convergence of the proposed solution is guaranteed.
The convergence proof follows the premise that a stream of water is guaranteed to flow
from the source to the destination, in the direction of gravity, irrespective of the starting
position, given that the destination is at a lower height than the source and there exists a
path between the source and the destination.

In the next chapter, we summarize the findings and contributions of the thesis. It will
also go into explaining potential paths of future research.

33

Chapter 6

CONCLUSIONS and FUTURE
WORK

In this chapter a summarization of the thesis will be done highlighting the main con-
tributions and obtained results. In addition, potential avenues for future work is also
suggested.

6.1 Conclusions

The main aim of this thesis is to design a novel algorithm that can navigate agents from
a starting position to a destination in the presence of obstacles using local knowledge.
This was achieved by proposing a two-part based solution that can be implemented in
a real gaming environment. We will now present a summary of the thesis detailing the
main contributions and results.

Chapter 1 was dedicated to providing a brief introduction regarding the history of
video games. The motivation behind this thesis, which is the need to create a novel
algorithm that can operate using local knowledge, was also briefly explained. Finally, the
aims and the outline was given to better explain the flow of the thesis.

Chapter 2 delved into a review of current video game pathfinding solutions as well as
an explanation of the classic Particle Swarm Optimization (PSO) algorithm. The review
of existing video game pathfinding algorithms included a condensed description regarding
the A* and the Windowed Hierarchical A* (WHCA*) algorithms. The inner workings of
A* and WHCA* were discussed along with a revelation on areas that can be improved.
The main drawbacks of A* based approaches which is the need for global knowledge of
the video game environment and having to compute and store the graph for the agents
were emphasized. Finally, the classic PSO algorithm was also elaborated on to highlight
its potential viability as video game pathfinding solution.

In Chapter 3, a novel video game pathfinding solution, LoS by Water-Filling algorithm
was proposed that can navigate Non-Playable Characters (NPC) to a destination in the
presence of obstacles using local knowledge. The proposed method is a two-part based
solution. When no line of sight (NLoS) can be established, the NLoS algorithm LoS
by Water-Filling navigates the agent to a position where LoS can be established to the
target destination. Once line of sight (LoS) has been established, the LoS algorithm takes
over. This solution is based on the principle that a stream of water will always flow in
the direction of gravity when the orientation of the landscape allows it. Given that the
destination is at a lower height than the starting position and there exists a path that

34

connects them, the algorithm will navigate the agent to the target position, irrespective
of the agent’s starting position. The main achievement of the LoS by Water-Filling is
the ability to navigate the agents to a destination position in the presence of obstacles
using local knowledge.

Chapter 4 detailed the line of sight (LoS) algorithms that will take over when the agent
can establish line of sight with the target destination. Four candidates based on existing
literature were suggested to solve the LoS situation. All of the submitted candidates
have their roots in the classic PSO paradigm. Out of the submitted candidates, the PSO
Version 1 without Particle Interaction and Constant Springs was selected as the LoS
algorithm.

Chapter 5 presented the simulation results and followed it with a discussion. It also
briefly described the testing environment GameMaker: Studio (GMS) that was used for
the simulations. Firstly, the steps that are taken when applying the proposed solution LoS
by Water-Filling to a real gaming environment were briefly examined. This mainly stems
from the prevalent movement restrictions in the video game environment GameMaker:
Studio (GMS). Due to this reason, a modified version of the proposed solution was imple-
mented that captures the essence of the LoS by Water-Filling algorithm. The simulation
for the LoS by Water-Filling algorithm consists of a complex map where none of the
agents have line of sight to the target destination from their starting positions. Thus,
they have to employ the LoS by Water-Filling algorithm to reach a line of sight position
where the LoS algorithm can take over. The effectiveness of the proposed algorithm in
a real gaming environment was displayed by showing that all agents converged on the
target destination navigating through obstacles by employing local knowledge.

Chapter 5 then went onto provide and compare results for the five LoS algorithms.
They are namely the Classic PSO algorithm, PSO Version 1 without Particle Interaction
and Constant Springs, PSO Version 2 without Particle Interaction and Random Springs,
PSO Version 3 with Particle Interaction and Constant Springs and PSO Version 4 with
Particle Interaction and Random Springs. Out of the five presented candidates, PSO
Version 1 was selected as the LoS algorithm due to its simplicity and fast guaranteed
convergence.

By analyzing the results obtained in Chapter 5, the convergence for the proposed
solution is guaranteed. The convergence proof follows the premise that a water stream is
guaranteed to flow from the source to a destination, in the direction of gravity, irrespective
of the starting position, given that the landscape is appropriately oriented and there exists
a path that connects the source to the destination.

6.2 Future work

There are many future avenues of potential research stemming from the presented ap-
proach. The proposed solution has many applications in robotics, especially pathfinding
and maze navigation.

Although the proposed solution can effectively navigate agents to a destination in
the presence of obstacles using local knowledge, it does not take collisions into account.
The current implementation of the algorithm assumes the agents to be volumeless and
massless and thus, having the ability to occupy the same space at the same time. Hence,
if this were to be implemented on a real-world problem, a robust and efficient collision
avoidance mechanism would be needed.

35

In addition, the proposed solution can further benefit from incorporating a social
influence into the search mechanism. For instance, if one of the agents have successfully
found a LoS position, it can broadcast this information to any agents in the immediate
vicinity. The receiving agent can then use this information to improve its search efficiency.
This element of cooperation can better improve the overall performance of the algorithm
by aiding faster convergence.

A similar principle can be applied to divide the video game map into non-intersecting
search areas which can be assigned to different agents. Initially, the agents search their
respective regions independent of each other but can relay information to neighbour-
ing agents, if one of them discovers a LoS position. This approach would definitely be
beneficial when a large video game map needs to be solved.

There are numerous interesting applications that can benefit from the proposed solu-
tion as well as further room for improvement. One is only limited by one’s own imagina-
tion.

36

Bibliography

[1] S. Kent, The Ultimate History of Video Games: From Pong to Pokemon—The Story
Behind the Craze That Touched Our Lives and Changed the World, 1st ed. Three
Rivers Press, 2001.

[2] K. Wang and A. Botea, “Fast and memory-efficient multi-agent pathfinding,” in
Proceedings of the Eighteenth International Conference on Automated Planning and
Scheduling, Sydney, Australia, September 2008, p. 380.

[3] X. Cui and H. Shi, “A*-based pathfinding in modern computer games,” International
Journal of Computer Science and Network Security, vol. 11, no. 1, pp. 125–128,
January 2011.

[4] D. Silver, “Cooperative pathfinding,” in Proceedings of the First Artificial Intelli-
gence and Interactive Digital Entertainment Conference. Marina del Rey, California:
Association for the Advancement of Artificial Intelligence, June 2005, pp. 117–122.

[5] A. Patel, “Introduction to a*,” Stanford Theory Group, [Online]. Available:
http://theory.stanford.edu/ amitp/GameProgramming/AStarComparison.html, ac-
cessed February 12, 2016.

[6] N. Sturtevant and M. Buro, “Improving collaborative pathfinding using map ab-
straction,” in Proceedings of the Second Artificial Intelligence and Interactive Dig-
ital Entertainment Conference. Marina del Rey, California: Association for the
Advancement of Artificial Intelligence, June 2006, pp. 80–81.

[7] G. Mathew and G. Malarthy, “Direction based heuristic for pathfinding in video
games,” Global Journal of Computer Science and Technology: Graphics & Vision,
vol. 15, pp. 1–2, 2015.

[8] W. Lee and R. Lawrence, “Fast grid-based path finding for video games,” in 26th
Canadian Conference on Artificial Intelligence. Regina, SK, Canada: Springer
Berlin Heidelberg, May 2013, pp. 100–101.

[9] Z. Bnaya and A. Felner, “Conflict-oriented windowed hierarchical cooperative a*,” in
2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2014, p. 2.

[10] J. Hagelbäck, “Hybrid pathfinding in starcraft,” IEEE Transactions on Computa-
tional Intelligence and AI in Games, p. 1, March 2015.

[11] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International
Conference on Neural Networks. IEEE, November 1995, pp. 1942–1948.

37

[12] J. Kennedy, R. Poli, and T.Blackwell, “Particle swarm optimization: An overview,”
Swarm Intelligence, vol. 1, pp. 33–57, June 2007.

[13] R. Eberhart and Y. Shi, “Particle swarm optimization: developments, applications
and resources,” in Proceedings of the 2001 Congress on Evolutionary Computation.
IEEE, May 2001, pp. 81–83.

[14] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and conver-
gence in a multidimensional complex space,” IEEE Transactions on Evolutionary
Computation, vol. 6, pp. 58–72, February 2002.

[15] T. Blackwell, “Particle swarms and population diversity,” Soft Computing, vol. 9,
pp. 793–802, November 2005.

[16] R. Graham, H. McCabe, and S. Sheridan, “Pathfinding in computer games,” ITB
Journal, vol. 4, pp. 57–59, December 2003.

38

