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Distributed Consensus with Dual Decomposition Methods Under Additive and

Bounded Errors

Hansi Kavindika Abeynanda

ABSTRACT

With the unprecedented growth of signal processing and machine learning application

domains, there has been a tremendous expansion of interest in distributed optimization

methods to cope with the underlying large-scale problems. The distributed optimiza-

tion methods allow large-scale systems that consist of many subsystems to solve a global

problem interactively via communication. In particular, many considerable advantages

such as the high fault-tolerance, scalability, less communication cost, solution speed, and

data privacy have invoked the application of distributed optimization methods in many

large-scale optimization problems. Nonetheless, inevitable system-specific challenges

such as limited computational power, limited communication, latency requirements, mea-

surement errors, and noises in wireless channels impose restrictions on the exactness of

the underlying distributed algorithms. Such restrictions have appealed to the exploration

of algorithms’ convergence behaviors under inexact settings. Thus, the main purpose of

this thesis is to analyze the convergence properties of distributed optimization method un-

der non-ideal settings. Moreover, we provide a systematic exposition on state-of-the-art

distributed optimization methods that cope with large-scale distributed problems.

Our main focus in this research lies in the inexactness of dual decomposition meth-

ods for distributed optimization. However, if such an inexactness is modeled as if it

stems from the dual-domain, investigating how it might evolve into the primal-domain

and how it might influence the primal optimality, and more importantly, how it affects

the optimality of a feasible point return by the underlying machinery is utmost impor-

tant. Howbeit, it seems that the analysis of convergences of dual decomposition methods

concerning primal optimality and primal feasibility, together with dual optimality is less

investigated in the literature. Therefore, it is desirable to have an exposition that lays

x



out the consequences of inexactness on the convergence properties of the primal-domain,

together with the convergence properties in the dual-domain. Motivated by this, here

we provide a systematic exposition on the convergence of dual decomposition methods

under inexact settings, for an important class of constrained global variable consensus

optimization problems. Convergences and the rate of convergences of the algorithms are

mathematically substantiated, not only from a dual-domain standpoint but also from a

primal-domain standpoint. More importantly, we provide the convergence results under

two cases, CASE 1 and CASE 2. The convergence results using strongly convex local

objective functions are established under CASE 1, and the convergence results using both

strongly convex and gradient Lipschitz continuous local objective functions are asserted

under CASE 2. In particular, all the theoretical results under both scenarios are estab-

lished using two step size rules, the constant step size rule, and the nonsummable step size

rule. Our analytical results show that the algorithms get into a neighborhood of optimality

in both dual and primal domains, the size of which depends on the level of underlying dis-

tortions. In further, an elaboration of a generalized problem formulation, which is known

as a general consensus problem is also furnished, together with the related convergence

properties of underlying algorithms. Finally, the theoretical derivations are verified by

numerical experiments.

Keywords: Distributed optimization, Consensus problem, Dual decomposition, Imper-

fect coordination, Bounded errors, Primal feasibility
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Chapter 1

Introduction

1.1 Purpose of the Thesis

Our world is a consequence of an interplay between a large number of networked sys-

tems with huge data volumes. The most common large-scaled networked systems in

our world include the internet, wireless networks (e.g., cell phone networks and satellite

communication networks), and power grids (See Figure 1.1). These important infrastruc-

tures consist of many subsystems which make local decisions and coordinate information

to accomplish their tasks. During this process, distributed optimization plays an impor-

tant role, which enables a system to solve a global optimization problem interactively

(cf. Chapter 2.1).

Distributed optimization is commonly used in many application fields such as signal

processing, machine learning, telecommunication networks, control systems, robotics,

and network applications, among others, [1–10]. Nonetheless, these underlying systems

face many system-specific challenges such as limited computational power, limited com-

munication, latency requirements, measurement errors, and noises in wireless channels,

which impose restrictions on the exactness of the underlying distributed optimization

methods. Thus, the analysis of distributed algorithms over non-ideal settings has been an

appealing area of study [11–28]. However, the analysis of dual decomposition methods

over non-ideal settings, concerning the convergences of primal feasibility points is less

investigated in the literature. Motivated by this, the main focus of this study lies around

the analysis of dual decomposition methods under non-ideal settings together with a sys-

tematic exposition of state-of-the-art distributed optimization methods. More specifically,

the main objectives of our study are as follows:

1



Figure 1.1: An example of a power grid.

1. Analyze the state-of-the-art distributed methods that are crucial in distributed opti-

mization settings (cf. Chapter 2).

- The contribution towards this objective is presented in Chapter 2. In particular,

we analyse the subgradient methods, Alternating Direction Method of Multipliers,

proximal gradient method, and dual averaging methods.

2. Investigate the fundamental theories associated with the distributed optimization

techniques (cf. Chapter 1.5).

- The basic theory related to convexity and duality, on which this thesis is built

is presented in Chapter 1.5.

3. Design distributed algorithms based on dual decomposition methods under numer-

ous non-ideal settings (cf. Chapter 3.4).

- Two distributed algorithms (Algorithm 5 and Algorithm 6) modeled under non-

ideal settings are proposed in Chapter 3.4. In particular, Algorithm 5 is a partially

distributed algorithm while Algorithm 6 is being a fully distributed algorithm.

4. Analyze the convergence properties of designed distributed algorithms (cf. Chap-

ter 4.1, Chapter 4.2, and Chapter 4.3.).

2



- Our main contribution towards this thesis lies around this objective. Related

findings are presented in Chapter 4.1, Chapter 4.2, and Chapter 4.3. More specifi-

cally, an analysis on the properties of the dual function is presented in Chapter 4.1,

Convergence properties of proposed algorithms based on the global consensus prob-

lem [cf. problem (3.1)] is presented in Chapter 4.2, and related convergence re-

sults based on the general consensus problem (cf. problem (4.133)) are presented in

Chapter 4.3.

5. Test the validity of theoretical results by simulations (cf. Chapter 4.4).

- Theoretical assertions presented in Chapter 4.2 based on the global consensus

problem are numerically tested in Chapter 4.4.

Our primary focus of this study is drawn to address a global consensus optimization

problem (cf. Chapter 3.1), which is frequently applied in many large-scale networked

systems that require distributed solution techniques [29].

A global consensus problem has the form

minimize
Pm

i=1 fi(x)

subject to x ∈ X ,
(1.1)

with the variable x ∈ IRn and X ⊆ IRn, which is considered as a common constraint

set. It is worth emphasizing that a general formulation to the problem (1.1) arises when

the functions fis depend only on a part of the variable x. This particular general problem

structure is known as the general consensus problem [cf. problem (4.133)]. We also ad-

dress this general problem formulation in Chapter 4.3 and related theoretical results are

discussed.

Our proposed distributed algorithms are based on dual decomposition techniques and

are modeled to capture a wide range of distortions. Convergences of the algorithms are

extensively analyzed in both primal and dual domains together with their rates of con-

vergences. More importantly, convergence properties of primal feasible points are also

3



theoretically substantiated which is of utmost importance in both analytical and practical

perspectives.

1.2 Motivation

The global consensus optimization problems of the form (1.1) play a crucial role in many

application domains. Some important examples include distributed averaging [30, 31],

power system control [32, 33], decentralized decision making and computation [34] and

distributed machine learning [35, 36]. Among these, machine learning has placed greater

importance in many applications such as medical diagnosis, image recognition, speech

recognition, social media, transportation, and many others. Here we present an important

example in medical diagnosis. Identifying whether an individual in a certain population

is having particular cancer is an important application in machine learning under med-

ical diagnosis. For this purpose, we use previous data from a fair amount of suitably

chosen training samples to model the probability p, that a randomly selected individual

has cancer. The probability p is modeled using the logistic model which has the form

(cf. [37, Section 7]

p =
exp(aTx+ b)

1 + exp(aTx+ b)
, (1.2)

where x ∈ IRn is called the explanatory variable, which represents a medically relevant

variable (see Figure1.2). The variables a ∈ IRn and b ∈ IR are called the model param-

eters. In particular, the explanatory variable x characterizes the factors affecting cancer

(for example, x can represent expression levels of an individual’s genes). Suppose that the

historical data for the variable x from different individuals are available from m randomly

chosen hospitals. Let u ∈ {0, 1} represents a random variable, where u = 1 denotes that

an individual in a particular hospital is having cancer and u = 0 denotes that an individual

is not having cancer. Moreover, suppose that the explanatory variables xl1, . . . ,xlql ∈ IRn

are available from a set of ql individuals in the lth hospital, where l = 1, . . . ,m, along

with the corresponding outcomes ul1, . . ., ulql ∈ {0, 1}. Moreover, we assume that there

4
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Figure 1.2: The probability p = exp(aTx+ b)/1 + exp(aTx+ b) with x ∈ IR, a = 2, and
b = −5.

are rl individuals in the lth hospital who have cancer, where rl ≤ ql. Without loss of

generality, we consider that xl1, . . . ,xlrl are the explanatory variables that belong to the

individuals who have cancer. Thus, we have uli = 1 for all i = 1, . . . , rl, and uli = 0

for all i = rl + 1, . . . , ql. Then, we can find a maximum likelihood estimate of the model

parameters a and b. Let pli denote the probability determined by the logistic model (1.2)

using xli ∈ IRn that belongs to the ith individual of the lth hospital, where i = 1, . . . , ql

and l = 1, . . . ,m. Then the likelihood function used only with the lth hospital has the

form

gl(a, b) =

rlY

i=1

pli

qlY

i=rl+1

(1− pli). (1.3)

The log likelihood function then given by

fl(a, b) = log (gl(a, b)) =

rlX

i=1

log pli +

qlX

i=rl+1

log(1− pli) (1.4)

=

rlX

i=1

(aTxli + b)−
qlX

i=1

log
�
1 + exp(aTxli + b)

�
, (1.5)

where (1.4) follows directly using (1.3) and (1.5) is immediate using simple calculation.
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Then the log likelihood function using m hospitals is given by

mX

i=1

fi(a, b) =
mX

i=1

 
rlX

i=1

(aTxli + b)−
qlX

i=1

log
�
1 + exp(aTxli + b)

�
!

(1.6)

Finally. the maximum likelihood estimate is any optimal point to the problem

maximize
(a,b)∈IRn×IR

f(a, b) =
mX

i=1

fi(a, b) (1.7)

It can easily be observed that the problem (1.7) takes the form of a global consensus

problem [cf. (1.1)]. Then the maximum likelihood estimate of the parameters a and b can

be found by solving the problem (1.7) using a suitable distributed method.

1.3 Our Contribution

In this thesis, we analyse the convergences of dual decomposition methods under non-

ideal settings together with a systematic analysis on state-of-the-art distributed optimiza-

tion methods. In particular, we consider a problem of minimizing a global convex objec-

tive function, which is a sum of local convex objective functions under general convex

constraints [cf. Chapter 3.1], a formulation common to many types of large-scale signal

processing and machine learning applications. The problem is commonly known as the

global consensus problem [cf. problem (3.1)]. In further, a general formulation to the

global consensus problem, which is known as the general consensus problem [cf. prob-

lem (4.133)] is also considered and related theoretical assertions are derived. More specif-

ically, the main contributions of this study are as follows:

1. State-of-the-art distributed optimization methods: We analyse state-of-the-art dis-

tributed optimization methods that cope with large-scaled optimization problems

(cf. Chapter 2). In particular, we provide a systematic exposition on subgradient

methods with numerical implementations, on which our study is mainly centered

around (cf. Chapter 2.2.2).
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2. Distributed optimization algorithms: Two distributed algorithms are proposed based

on dual decomposition techniques over non-ideal settings (cf. Chapter 3.4.1 and

Chapter 3.4.2), where a set of subproblems coordinate towards achieving the global

objective. Our modeling captures a wide range of distortions, including quantiza-

tion errors, approximation errors, errors due to subproblem solver accuracy, noise

in wireless settings, and measurement errors, among others, as long as they are

additive and bounded (cf. Chapter 3.4: Remark 11).

3. Properties of the dual function: Important properties of the dual function, that rely

on certain characteristics of the underlying primal problem are explicitly identified.

Related Lipschitzian properties and strong convexity properties are analytically

substantiated (cf. Proposition 1 and Proposition 2). Moreover, the bounding proper-

ties for the primal error, in terms of the dual error are also analysed (cf. Lemma 6).

4. Convergence analysis in the dual-domain: Under mild conditions, convergences of

the algorithms in the dual-domain are analytically substantiated under both fixed

step size and nonsummable step size rules (cf. Chapter 4.2.2: Corollary 2 and

cf. Chapter 4.2.3: Corollary 3, Corollary 4). We show that the algorithms get into

a neighborhood of optimality, the size of which depends on the level of underlying

distortions. Convergence rates are also derived.

5. Convergence analysis in the primal domain: Under mild conditions, convergences

of the algorithms in the primal-domain are analytically substantiated under both

fixed step size and nonsummable step size rules (cf. Chapter 4.2.2: Proposition 4.2.2

and cf. Chapter 4.2.3: Proposition 4.2.3). Despite primal infeasibility, we show that

the algorithms get into a neighborhood of optimality, the size of which depends on

the level of underlying distortions. Convergence rates are also derived.

6. Constructing primal feasible points and their optimality: Constructing a feasible

solution by using current infeasible primal variables is highlighted in Chapter 4.2.4

(cf. Remark 16). Under mild conditions, convergences of the algorithms in primal-
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domain, while maintaining feasibility, are analytically substantiated (cf. Chapter 4.2.4:

Proposition 4.2.5, Proposition 4.2.6, and Proposition 4.2.7). Convergence rates are

also derived.

7. Generalized problem formulation (general consensus problem) and related results:

A generalization to the original problem formulation is furnished in Chapter 4.3.1.

More importantly, we highlight how the theoretical assertions presented in chap-

ter 4.1 (dual function properties) and Chapter 4.2 (convergence results in the dual

domain and the primal domain) can be deduced with the generalized problem for-

mulation (cf. Corollary 5, Corollary 6, and Corollary 7).

8. Numerical Examples: Theoretical assertions presented in this study are empirically

evaluated in Chapter 4.4. The effect of quantization on the convergence in the dual

domain and the primal domain are empirically tested in Chapter 4.4.1. The effect

of measurement errors on the related convergences are empirically evaluated in

Chapter 4.4.2.

Moreover, the major part of this thesis is mainly built on the contents presented in

our manuscripts [38,39] and the conference paper [40]. The manuscript [38] is pub-

lished in the Journal of Mathematics (Hindawi), and the manuscript [39] is accepted

for publication in the IEEE Transactions on Signal Processing. The conference pa-

per [40] is published in the Proceedings of the SLIIT International Conference on

Advancements in Sciences and Humanities 2022.

1.4 Outline of the Thesis

In this section, we describe the outline of the thesis.

In Chapter 1.5, we present the background material, such as the related theoretical

concepts, basic notations, and definitions on which this thesis is built. In particular, first,

we provide an exposition of mathematical optimization problems. Further, we present

basic theories related to convexity and duality together with their important consequences.

8



A review of the related literature is thoroughly presented in Chapter 2. The back-

ground of distributed optimization is discussed first. More importantly, the state-of-the-

art distributed optimization methods together with related basic theories are discussed in

more detail. A thorough exposition of the subgradient method with numerical examples

is provided as our study is mainly based on subgradient methods together with dual de-

composition. Further, different classes of convergence rates of algorithmic sequences are

introduced. Finally, the challenges that arise in distributed optimization are discussed.

Especially, distributed optimization over non-ideal settings has been discussed in more

detail.

Chapter 3 introduces the main problem that we consider in this study and discuss

the related distributed solution methods based on dual decomposition. More specifically,

the effect of imperfect coordination between subsystems is considered. Further, two dis-

tributed algorithms over non-ideal settings are proposed based on dual decomposition.

Chapter 4 contains the main results of this research study. An extensive analysis of the

properties of the dual function associated with the considered primal problem has been

provided in Chapter 4.1. More importantly, the Lipschitzian and strong convexity proper-

ties of the dual function are analyzed and related theoretical results are explicitly derived.

Further, useful relations among dual and primal variables are also presented, which are

used to analyze the convergence properties of the proposed algorithms in the primal do-

main. Chapter 4.2 presents the convergence analysis of our proposed algorithms over

non-ideal settings. Especially, the convergence properties are discussed under two main

cases, CASE 1 and CASE 2. The convergence results in both dual and primal domains

are established together with related rates of convergences. Moreover, convergences in

primal feasible points are also discussed and related theoretical assertions are established.

The generalized problem formulation is presented in Chapter 4.3. The extensions to all

the theoretical assertions presented in Chapter 4.1 and Chapter 4.2 based on the global

consensus problem are presented in this chapter. The theoretical assertions presented in

this study are numerically evaluated in Chapter 4.4. More importantly, the effect of quan-
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tization and measurement errors on the convergence in the dual domain and the primal

domain are empirically tested.

Finally, we summarize the thesis and discuss the results in Chapter 5. We also discuss

the possible future research directions to continue the work started with this thesis.

1.5 Related Theory

In this section, first, we present a brief introduction to mathematical optimization. Next,

we present basic theory related to convexity and duality, on which this thesis is built. In

particular, we present basic notations, definitions, and important consequences of convex-

ity and duality. We refer the readers [37, 41] for thorough exposition.

1.5.1 Mathematical Optimization

Mathematical optimization is a technology that can be used to determine the best possi-

ble solution corresponding to the optimum performance of a quantitatively well defined

system. Related technology is invoked by many systems that are employed in a variety

of contexts, such as machine learning, automatic control, estimation and signal process-

ing, communications and networks, electronic circuit design, data analysis and modeling,

statistics, finance, and many others [42–44]. The process of reaching the best possible

decision requires a phase of constructing a suitable mathematical model for a given solid

problem, followed by a suitable solution method. Primarily, a well defined optimization

model requires a quantitative objective criterion, in which our goal is to maximize (e.g.

profit) or minimize (e.g. cost). Further, it requires specification of suitable constraints

that representing the limitations of different resources that are equipped with the prob-

lem structure to be optimized. The best design of a well posed optimization model is a

one which produce the best possible objective value, together with satisfying all problem

constraints.
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1.5.1.1 Optimization Problems

In this section, we introduce the general form of a mathematical optimization problem

and discuss the basic terminology used in an optimization problem.

General form

Formally, a mathematical optimization problem has the form

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . , q,

(1.8)

where x ∈ IRn is called the decision variable or optimization variable and f : IRn → IR

is called the objective function. The inequalities gi(x) ≤ 0 are known as inequality

constraints and the equations hi(x) = 0 are called equality constraints. The functions

gi : IRn → IR and hi : IRn → IR are known as inequality constraint functions and

equality constraint functions, respectively. The set

S = dom f ∩ (∩p
i=1dom gi) ∩ (∩q

i=1dom hi) (1.9)

is called the domain of the optimization problem (1.8).

In general, optimization problem (1.8) is called a constrained optimization problem.

In the absence of constraints, it is considered as an unconstrained problem.

It is worth noting that, the constraints given in (1.8) can be described abstractly by

embedding all the constraints in to a single set. The corresponding formulation has the

form
minimize f(x)

subject to x ∈ X ,
(1.10)

where x ∈ IRn and X ⊆ IRn.
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Feasibility

A point x ∈ S is called a feasible point of the problem (1.8) if it satisfies the constraints

gi(x) ≤ 0, i = 1, . . . , p, and hi(x) = 0, i = 1, . . . , q. The set of all feasible points

is called the feasible set. If the feasible set is nonempty, we say that the optimization

problem (1.8) is feasible.

Optimality

The optimal value of the problem (1.8) is denoted by f ⋆, and is defined by

f ⋆ = inf{f(x), | x ∈ S, gi(x) ≤ 0, i = 1, . . . , p, hi(x) = 0, i = 1, . . . , q}. (1.11)

We say x⋆ is an optimal point or optimal solution to the problem (1.8) if it is feasible and

f(x⋆) = f ⋆.

Sub-optimality

A feasible point x ∈ S with f(x) ≤ f ⋆ + ε, where ε > 0 is called a ε-suboptimal point.

Local and global optimal points

A feasible point x ∈ S is called a local optimal point for the problem (1.8) if there exists

an r ∈ IR+ s.t.

f(x) = inf{f(y) | y ∈ S, gi(y) ≤ 0, i = 1, . . . , p, hi(y) = 0, i = 1, . . . , q,

∥y − x∥ ≤ r}. (1.12)

In other words, this means the local minimizer x minimizes f only over a neighborhood

of x in the feasible set. The global optimal point is simply an optimal point x⋆ to the

problem (1.8).

12



1.5.2 Convexity

1.5.2.1 Convex Sets

Let X ⊆ IRn and x1,x2 ∈ IRn are any two points in X . Then, X is said to be convex if

αx1 + (1− α)x2 ∈ X ,

where α ∈ IR and 0 ≤ α ≤ 1. Intuitively, a set X is said to be convex if it contains the

line segment between any two points in it (see Figure 1.3).

(a) (b)

Figure 1.3: Graphical interpretation of convex and nonconvex sets. (a) The ellipse is a
convex set. (b) The kidney shaped set is not convex, since the line segment between the
given two points is not contained in the set.

1.5.2.2 Basics of Convex Functions

In this section, we discuss about convex functions which play an important role in con-

vex optimization. In particular, we define convex, strictly convex, and strongly convex

functions, and discuss important consequences.

Convex functions

Definition 1 (Convex function). A function f : IRn → IR is called convex if dom f is a

convex set and if for all x,y ∈ dom f and for all t ∈ IR s.t. 0 ≤ t ≤ 1, it holds that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (1.13)
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Geometrically, a function is convex if the chord from x to y, i.e. the line segment be-

tween the points (x, f(x)) and (y, f(y)) lies on or above the graph of f [see Figure1.4 (a)

for an illustration]. We say that f is concave if −f is convex.

Next, we mention the following important theorem, which states an alternative way to

characterize the convexity of a function.

Theorem 1. Let f : IRn → IR be a differentiable function and suppose that dom f is

convex. Then, f is convex if and only if

f(y) ≥ f(x) +∇f(x)T(y − x), for all x,y ∈ dom f. (1.14)

Inequality (1.14) of Theorem 1 has an interesting geometric interpretation, that is the

first order Taylor expansion at any point in the domain is a global under estimator of the

function f . Roughly speaking, the graph of f is bounded below by any tangent hyperplane

of f drawn at any point on the domain.

Strictly convex functions

Definition 2 (Strictly convex function). A function f : IRn → IR is called strictly convex

if for all x,y ∈ dom f with x ̸= y and for all t ∈ IR with 0 < t < 1, it holds that

f(tx+ (1− t)y) < tf(x) + (1− t)f(y). (1.15)

This means, a function is strictly convex if the inequality (1.13) holds strictly when-

ever x ̸= y and 0 < t < 1 [See Figure 1.4 (b)]. Obviously, a strictly convex function is

always convex.
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Figure 1.4: Classification of convex functions: (a) Convex function: The line segment
between any two points on the graph lies on or above the graph. (b) Strictly convex
function: The line segment between any two points on the graph lies above the graph.
(c) Strongly convex function: The graph is always lower bounded by a convex quadratic
function drawn to the graph at any point in the domain.

Strongly convex functions

Definition 3 (Strongly convex function). A function f : IRn → IR is strongly convex on

C ⊆ dom f , if ∃ l > 0, s.t

f (tx+ (1− t)y) ≤ tf(x)+(1−t)f(y)−1

2
lt(1−t)∥x−y∥22, ∀x,y ∈ C, when 0 < t < 1,

(1.16)

where l is called the strong convexity constant of f .
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Next, we present some important consequences of strongly convex functions.

Theorem 2 ( [45], Exercise 12.59). Let f : IRn → IR be a given function and l ∈ IR+.

Then the following properties are equivalent.

a) ∂f is strongly monotone with constant l.

b) f is strongly convex with constant l.

c) f − 1
2
l∥x∥22 is convex.

Theorem 3. A differentiable function f : IRn → IR is strongly convex with constant l if

and only if

f(y) ≥ f(x) +∇f(x)T(y − x) +
l

2
∥y − x∥22, for all x,y ∈ domf. (1.17)

Remark 1 (Quadratic lower bound). Theorem 3 indicates that a differentiable strongly

convex function is always lower bounded by a convex quadratic function f0(x) = f(x) +

∇f(x)T(y − x) + l
2
∥y − x∥22 at any point x ∈ domf [see Figure 1.4 (c)].

1.5.2.3 Convex Optimization Problems

We restate the problem (1.8) considered in Section 1.5.1.1 for clarity:

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . , q,

(1.18)

where x ∈ IRn. Then the problem (1.18) is called convex if

• the objective function f is convex,

• the inequality constraint functions gis are convex, and

• the equality constraint functions his are affine.
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If the problem (1.18) has linear equality constraints, i.e., hi(x) = aT
i x − bi, where

ai ∈ IRn and bi ∈ IR for all i = 1, . . . , q, then the set of equality constraints can express

more compactly in the matrix form Ax = b, where A ∈ IRq×n and b ∈ IRq. Then the

related convex optimization problem takes the form

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . , p

Ax = b.

(1.19)

More importantly, convex optimization problems can be solved very reliably and effi-

ciently using interior-point methods and first order methods, and most of the theories re-

lated to convex optimization have been already developed. Therefore, recognizing or for-

mulating a problem as a convex optimization problem gives us a great advantage [37,46].

For example, if we consider a non-convex constrained optimization problem (a minimiza-

tion problem), the associated dual problem (which is a maximization problem) is always

concave. Thus the equivalent minimization problem with the negative dual function is

always convex. Hence, under certain conditions, the original problem can be solved using

the dual problem which provides an easy working environment due to the convexity of

the negative dual function.

1.5.3 Duality

1.5.3.1 The Lagrange Dual Function

Let us first consider the general form (1.8) of an optimization problem. In particular, the

optimization problem (1.8) is called the primal problem. Suppose that the set of optimal

solutions to the problem (1.8) is nonempty. Let f ⋆ denote the optimal value. The problem

(1.8) is not necessarily to be convex. Then the Lagrangian L : IRn × IRp × IRq → IR
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associated with the problem (1.8) is given by

L(x,λ,η) = f(x) +

pX

i=1

λigi(x) +

qX

i=1

ηihi(x), (1.20)

where λi ∈ IR and ηi ∈ IR represent the Lagrange multipliers associated with the ith

inequality constraint gi(x) ≤ 0 and the ith equality constraint hi(x) = 0, respectively.

Moreover, λ = [λ1 . . . λp]
T ∈ IRp and η = [η1 . . . ηq]

T ∈ IRq are called the dual vari-

ables or Lagrange multiplier vectors associated with (1.8).

Finally, The Lagrange dual function g : IRp × IRq → IR is given by

g(λ,η) = inf
x∈S

L(x,λ,η) = inf
x∈S

 
f(x) +

pX

i=1

λigi(x) +

qX

i=1

ηihi(x)

!
. (1.21)

Important properties of the dual function associated with the primal problem (1.8) are

summarized below.

Remark 2 (Concavity). The dual function is always concave as it is the pointwise infimum

of a family of affine functions of λ and η.

Remark 3 (Lower bounds on optimal value). For any λ ≥ 0 and for any η ∈ IRq, the

dual function (1.21) yields lower bounds on f ⋆ of the primal problem (1.8), i.e.,

g(λ,η) ≤ f ⋆. (1.22)

1.5.3.2 The Lagrange Dual Problem

It is worth noting that the Lagrange dual function g(λ,η) [cf. (1.21)] produces lower

bounds on the optimal value f ⋆ of the problem (1.8) for any λ ≥ 0 and η ∈ IRq [cf. Re-

mark 3]. Thus, it is interesting to find the best lower bound on f ⋆ that is produced by

g(λ,η). The procedure to find the best lower bound leads to solving the optimization

problem

maximize g(λ,η)

subject to λ ≥ 0.
(1.23)
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This problem (1.23) is called the Lagrange dual problem associated with the primal

problem (1.8). It is worth emphasizing that the equivalent minimization problem of the

Lagrange dual problem (1.23) can be posed as

minimize −g(λ,η)

subject to λ ≥ 0.
(1.24)

The optimization problem (1.24) is always convex, as −g(λ,η) is convex (cf. Re-

mark 2) and the constraint is convex. Thus, the Lagrange dual problem can always be

viewed as a convex optimization problem.

1.5.3.3 Weak and Strong Duality

Weak Duality: Let d⋆ be the optimal value of the Lagrange dual problem (1.23). Thus

from (1.22) we have d⋆ ≤ f ⋆. This property is called weak duality.

Strong Duality: If it holds d⋆ = f ⋆, we say that strong duality holds.

Following result gives a certificate for holding the strong duality.

Theorem 4 ( [37], Section 5.2.3). Suppose that the primal problem (1.8) is convex and

the constraints satisfy the Slater’s condition: ∃ x ∈ relint S s.t,

gi(x) < 0, i = 1, . . . , p, and Ax = b, (1.25)

where A ∈ IRq×n and b ∈ IRq. Then the strong duality holds.

1.5.3.4 KKT Optimility Conditions

Consider the primal problem (1.8) and its associated dual problem (1.23). Then the

Karush-Kuhn-Tucker (KKT) conditions associated with the problem (1.8) are given by

1. Stationary condition: 0 ∈ ∂ (f(x) +
Pp

i=1 λigi(x) +
Pq

i=1 ηihi(x))

2. Primal feasibility: gi(x) ≤ 0, i = 1, . . . , p
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hi(x) = 0, i = 1, . . . , q

3. Dual feasibility: λi ≥ 0, i = 1, . . . , p

4. Complementary slackness: λigi(x) = 0, i = 1, . . . , p,

where x ∈ S.

KKT conditions are usually used to determine primal and dual optimal values. Here

we provide a well-known result, which allows us to determine whether a given pair of

primal and dual optimal points produce optimal values.

Theorem 5. Suppose that the strong duality holds for a given optimization problem. Then,

x⋆ and the pair (λ⋆,η⋆) are the primal and dual optimal values respectively, if and only

if x⋆ and the pair (λ⋆,η⋆) satisfy the KKT conditions.

1.6 Mathematical preliminaries

In this section, we present important definitions we use in most of the proofs of conver-

gence properties discussed in this thesis. Moreover, some well-known theoretical results

are also presented for completeness.

1.6.1 Basic Definitions

Definition 4 (Open set). A set C ⊆ IRn is called open if int C = C.

Definition 5 (Closed set). A set C ⊆ IRn is called closed if its complement IRn \C is open.

Definition 6 (Epi graph). Let f : IRn → IR. The set epi f = {(x, t) | x ∈ dom f, t ∈

IR, t ≥ f(x)} is called the epigraph of f .

Note that the epi f is a subset of IRn+1. An equivalent definition for convex functions

can also be given using the epigraph of a function as highlighted in the following remark.

Remark 4. A function f : IRn → IR is convex if and only if its epigraph is a convex set

in IRn+1.
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Definition 7 (Closed function). A function f : IRn → IR is said to be closed if epi f is

closed.

Definition 8 (ℓ2-norm). The ℓ2-norm or the Euclidean norm of a vector x ∈ IRn is defined

as,

∥x∥2 = (xTx)1/2 =

 
nX

i=1

x2
i

!1/2

, (1.26)

where x = [x1 . . . xn]
T and xi ∈ IR, ∀i = 1, . . . , n.

Definition 9 (Matrix 2-norm). The matrix norm induced by the Euclidean vector norm is

given by

∥A∥2 = max
∥x∥2=1

∥Ax∥2, (1.27)

and is known as the matrix 2-norm. The matrix 2-norm is often called the spectral norm.

Definition 10 (Spectrum of a matrix). The set of distinct eigenvalues of an n × n matrix

A is called the spectrum of A and is denoted by σ(A).

Definition 11 (Spectral radius). Let λ be an eigenvalue of a square matrix An×n. Then,

ρ(A) = sup
λ∈σ(A)

|λ| (1.28)

is called the spectral radius of A.

Remark 5 (Properties of spectral norm).

i. ∥A∥ =
p
ρ(ATA)

ii. ρ(A) ≤ ∥A∥ (This property is true for any matrix norm).

iii. When A is symmetric, ∥A∥ = ρ(A).

iv. ∥Ax∥ ≤ ∥A∥∥x∥, where x ∈ IRn (This property is true for any matrix norm with

its underlying vector norm).
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Definition 12 (Kronecker Product). The Kronecker product of two matrices Am×n and

Bp×q is defined to be the mp× nq matrix

A⊗B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB

...
... . . . ...

am1B am2B · · · amnB



. (1.29)

Remark 6. Let λi, i ∈ {1, . . . , n} and µi, i ∈ {1, . . . ,m} be eigenvalues of matrices

An×n and Bm×m, respectively. Then the eigenvalues of A ⊗ B are the mn values λiµj ,

where i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

Definition 13 (Strong monotonicity). A mapping f : IRn → IRm is called strongly mono-

tone, if ∃κ > 0, s.t

(y1 − y0)
T(x1 − x0) ≥ κ∥x1 − x0∥22, whenever y0 ∈ f(x0) and y1 ∈ f(x1),

where x0,x1 ∈ IRn. (1.30)

Definition 14 (Lipschitz continuity). Let f : IRn → IR with dom f = X . Then, f is

Lipschitz continuous on C ⊆ X , if ∃ L > 0, s.t

|f(x)− f(y)| ≤ L∥x− y∥2, ∀x,y ∈ C. (1.31)

Here L is called the Lipschitz constant for f on C.

Remark 7. A differentiable function f : IRn → IR is said to have a Lipschitz continuous

gradient on C ⊆ dom f , if ∃ L > 0 s.t.

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2, ∀x,y ∈ C, (1.32)

where L is called the gradient Lipschitz continuous constant of f .
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Definition 15 (Conjugate function). Let f : IRn → IR. Then the function f ∗ : IRn → IR

defined by

f ∗(y) = sup
x∈dom f

�
yTx− f(x)

�
(1.33)

is called the conjugate function of f .

Definition 16 (Indicator function). Let C ⊆ IRn be any given set. Then the function δC

defined by

δC(x) =





0 ; x ∈ C

∞ ; x /∈ C,
(1.34)

is called the indicator function of the set C.

Definition 17 (Subgradient). Let f : IRn → IR be a real valued function. Then, a vector

d ∈ IRn is called a subgradient of f at x ∈ dom f , if

f(y) ≥ f(x) + dT(y − x), for all y ∈ dom f. (1.35)

The set of all subgradients of f at x ∈ dom f is called the subdifferential of f at x

and denoted by ∂f(x). If f is convex and differentiable at x, then its subgradient at x is

unique and it is the gradient of f at x, i.e., ∂f(x) = {∇f(x)}.

Remark 8. If f(y) < f(x) + dT(y− x), for all y ∈ dom f , then the vector d ∈ IRn is

called a supergradient of f at x ∈ dom f [cf. (1.35)].

Definition 18 (Limit superior). The limit superior of a sequence xn is defined by

lim sup
n→∞

xn = lim
n→∞

�
sup
m≥n

xm

�
, (1.36)

where supm≥n xm = sup{xm : m ≥ n}.

Definition 19 (“Small oh” notation). If the sequences u(k) ∈ IRn, v(k) ∈ IRm, where

k ∈ Z0
+, are such that ∥v(k)∥/∥u(k)∥ → 0 as k → ∞, then v(k) = o(u(k)). The notation

o(·) is called the “small oh” notation.
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Definition 20 (“Big oh” notation). If for sequences u(k) ∈ IRn, v(k) ∈ IRm, where k ∈

Z+
0 , there exist α > 0 and k0 ∈ Z+

0 , such that ∥v(k)∥ ≤ α∥u(k)∥ for all k ≥ k0, then

v(k) = O(u(k)). The notation O(·) is called the “big Oh” notation.

1.6.2 Basic Results

Lemma 1 ( [41], Section 12). Let f : IRn → IR be a continuously differentiable func-

tion and the gradient ∇f is Lipschitz continuous on C ⊆ IRn with constant L > 0 (cf.

Remark 7). Then it holds

|f(x)− f(y)−∇f(y)T(x− y)| ≤ L

2
∥x− y∥22, ∀ x,y ∈ C. (1.37)

Next, an important consequence of Lemma 1 is highlighted in the following remark.

Remark 9 (Quadratic upper bound). Let f : IRn → IR be a continuously differentiable

function and is with a Lipschitz continuous gradient on C ⊆ IRn. Then, at any point

y ∈ C, the function f(x) can be upper bounded by a strongly convex quadratic function

fupper = f(y) +∇f(y)T(x− y) + (L/2)∥x− y∥22.

Lemma 2 ( [41], Section 12). Let f : IRn → IR be a continuously differentiable and

convex function on IRn. If the gradient ∇f is Lipschitz continuous on IRn with constant

L > 0, then

0 ≤ f(x)− f(y)−∇f(y)T(x− y) ≤ L

2
∥x− y∥22, ∀ x,y ∈ IRn. (1.38)

Theorem 6 ( [47], Section 1.2.2). Let f : IRn → IR be a convex function. Suppose that

f is differentiable at x⋆ ∈ IRn and ∇f(x⋆) = 0. Then x⋆ is a global minimum point of

f(x) on IRn.

Theorem 7 ( [47], Section 1.3.2). A minimum point of a strictly convex function is (glob-

ally) unique.
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Chapter 2

Literature Review

This chapter is organized as follows. First, we discuss the importance of distributed

optimization. Next, we discuss the state-of-the-art distributed optimization methods to-

gether with basic theories. Here, we provide a systematic exposition of decomposition

methods which are general approaches to solving an optimization problem in a distributed

manner. More importantly, we provide a thorough exposition of the subgradient method

with numerical examples as our study is mainly based on subgradient methods together

with dual decomposition. Further, we discuss different classes of convergences rates of

iterative/algorithmic solution sequences. Finally, the challenges that arise in distributed

optimization are discussed.

2.1 Distributed Optimization: The background

Historically, centralized methods have been the primary tool for solving optimization

problems in means of many application fields. In centralized optimization, the underlying

system is considered as one whole system which is operated under one central controller.

However, the application of centralized methods was not suitable with the increase in

problem dimensionality and large data sets in modern systems. Consequently, there has

been a tremendous expansion of interest in distributed optimization methods to cope with

the underlying large-scale problems.

A distributed optimization setting consists of many subsystems (usually call as users

or agents) to solve a global problem interactively via communication among neighboring

subsystems. Rather than performing a central calculation, solving a problem in a dis-

tributed manner afford many considerable advantages. The entire process in a centralized
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system may fail if the central controller is corrupted. However, the failures in several sub-

systems in a distributed system may not harm the operation of a distributed setting. More-

over, subsystems of a distributed setting share information only with required neighboring

subsystems. This can improve cybersecurity and reduce communication costs. Further,

distributed methods are computationally superior in terms of the solution speed compared

to centralized methods with the ability to perform parallel computations in distributed al-

gorithms [48]. Finally, another major drawback in a centralized setting appears in respect

of the privacy of data. However, distributed methods have the potential to secure the pri-

vacy of data among respective agents with the existing distributed computing structure

in the underlying distributed system. With all these benefits, there has been much recent

interest in the study of distributed optimization techniques over large-scale data intensive

problems.

Distributed optimization techniques are widely used in many application fields, in-

cluding machine learning, signal processing, communications [49–52], electricity grid

[53,54], smart grids, wireless sensor networks [55], and statistical learning [56]. In many

of these applications, the main goal is to optimize a global objective using several sub-

systems through local computations and local communications among the neighboring

subsystems in the underlying networked system. In general, a distributed optimization

problem consists of the following components (see Figure 2.1):

• The optimization problem (objective function and related constraints), that the agents

in the network need to solve collaboratively.

• The local information structure, which determines what information is locally avail-

able for each agent in the network.

• The communication structure, which specifies the connectivity of the underlying

networked system.
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Figure 2.1: Distributed networked system.

In general, a distributed optimization problem has the form

minimize f(x) =
Pm

i=1 fi(x)

subject to x ∈ X ,
(2.1)

where fi : IR
n → IR is usually convex and considered as the local objective function of

agent i, where i = 1, . . . ,m, and X ⊆ IRn is called the common constraint set which is

closed and convex. Here, the function fi is only known to agent i and x ∈ X represents

the global decision vector which wants to estimate collectively by agents in the system

using local information. The problem 2.1 is usually called the global consensus problem

(cf. Chapter 1.1).
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2.2 Distributed Optimization Methods

A well posed optimization problem requires a suitable optimization method to determine

the best possible solution. However, in reality, it may be difficult or not possible to find

closed form solutions to optimization problems associated with many real world appli-

cations. Thus, the approximate methods that provide approximate solutions are heavily

used to solve optimization problems with a required degree of accuracy. Roughly speak-

ing, with the existing large data sets available in modern systems, iterative methods are

indeed of great importance in producing distributed optimization methods.

In particular, distributed optimization methods enable an optimization system to solve

a global problem interactively with many subsystems. With challenges, such as huge

problem dimensionality, large data volumes, and the geographical distribution of data, the

most commonly used distributed optimization methods are the first-order methods.

In general, first order methods (e.g., subgradient methods and alternating direction

method of multipliers) are the techniques that only use function values and first order

information, i.e, the information on gradients/subgradients of functions comprising in

an underlying optimization model. Compared to second order methods (e.g., Newton’s

method and interior-point methods) [57], the first order methods require low computa-

tional cost as they do not require any computation on second order information or the

Hessian. Thus, it requires low iteration cost as well as low memory storage. Consequently,

it creates a revived interest in using first-order methods in many large-scale optimization

problems. In this respect, the currently existing state-of-the-art first order methods are

the subgradient methods [58], alternating direction method of multipliers (ADMM) [56],

proximal gradient method [59], and dual averaging [60].

2.2.1 Decomposition Methods

Many distributed optimization algorithms are built on decomposition methods. In par-

ticular, a decomposition is an interesting approach to solving an optimization problem
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by breaking it up into smaller subproblems and solving each of them separately. These

subproblems get solved either in parallel or sequentially [46, 61–64]. Decomposition in

the field of optimization appears in early work on large-scale linear programs from the

1960s [65]. The simplest decomposition structure is available in block separable prob-

lems. An example of a block separable problem is

minimize f1(x1) + f2(x2)

subject to x1 ∈ X1, x2 ∈ X2,
(2.2)

where X1 ⊆ IRn and X2 ⊆ IRm. The problem formulation given in 2.2 allows us to min-

imize the functions f1(x1) and f2(x2) separately and in parallel. However, this problem

formulation is trivial and not interesting too, as many real life working problems appear in

a more complex form than this [61]. The problem 2.2 will appear in a more complicated

form and it will create more interest when the variables x1 and x2 are coupled. Then the

functions f1(x1) and f2(x2) cannot be solved separately. Thus, the techniques that handle

such situations are of utmost importance. In this respect, the most well-known currently

available decomposition methods are primal decomposition and dual decomposition.

2.2.1.1 Primal decomposition

We consider a constrained minimization problem which is jointly solved by m subsystems

(usually called as users), where m ∈ Z+. The respective problem takes the form

minimize f(x) =
Pm

i=1 fi(xi,y)

subject to xi ∈ Ci, i = 1, 2, . . . ,m, y ∈ Y ,
(2.3)

where x = (x1,x2, . . . ,xm,y), Ci ⊆ IRn, and Y ⊆ IRn. The functions fi : IR
2n → IR

represent real valued local objective functions of individual subsystems. Here, it can eas-

ily be observed that the variable y has coupled the local objective functions of individual

subsystems. Thus, we call the variable y the complicating variable. When the variable y

is fixed the problem (2.3) becomes separable, [cf. (2.2)] and it decomposes in to m smaller
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subproblems

Si(y) = minimize
xi∈Ci

fi(xi,y).

Then the original problem (2.3) is equivalent to the problem

minimize
y∈Y

S(y) =
Pm

i=1 Si(y). (2.4)

The problem (2.4) is called the master problem in primal decomposition [61]. Next,

the original problem (2.3) is usually can be solved by solving the master problem (2.4)

using a suitable distributed algorithm.

2.2.1.2 Dual decomposition

Here we consider the same problem (2.3) discussed under primal decomposition only

with two users for clarity. Then, the related minimization problem takes the form

minimize f(x) = f1(x1,y) + f2(x2,y)

subject to x1 ∈ X1, x2 ∈ X2, y ∈ Y ,
(2.5)

where x = (x1,x2,y), x1 ∈ IRn, x2 ∈ IRn, y ∈ IRn, X1 ⊆ IRn,X2 ⊆ IRn, and Y ⊆ IRn.

As usual, f1 and f2 represent local objective functions of subsystem 1 and subsystem 2,

respectively. Next, we rearrange the problem (2.5) as

minimize f(x1,x2,y1,y2) = f1(x1,y1) + f2(x2,y2)

subject to y1 = y2,

x1 ∈ X1, x2 ∈ X2, y1, y2 ∈ Y

(2.6)

by introducing new variables y1, y2, and an equality constraint [61]. According to this

new formulation, the objective function f is now separable. Next we consider the dual

problem formulation of (2.6). The Lagrangian associated with (2.6) is given by (cf. Sec-
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tion 1.5.3.1)

L(x1,x2,y1,y2,λ) = f1(x1,y1) + f2(x2,y2) + λT(y1 − y2), (2.7)

where λ ∈ IRn. Next, the related dual function (cf. Section 1.5.3.1) is given by

g(λ) = inf
x1∈X1, x2∈C2

y1,y2∈Y

L(x1,x2,y1,y2) (2.8)

= inf
x1∈X1, x2∈X2

y1,y2∈Y

��
f1(x1,y1) + λTy1

�
+
�
f2(x2,y2)− λTy2

��
. (2.9)

We can note that the problem (2.9) is separable. Thus the dual function g(λ) can be

obtained by solving the subproblems

Subproblem 1: g1(λ) = inf
x1∈X1,y1∈Y

f1(x1,y1)− λTy1 (2.10)

Subproblem 2: g2(λ) = inf
x2∈X2,y2∈Y

f2(x2,y2)− λTy2 (2.11)

Then the associated dual problem is given by

maximize
λ∈IRn

g(λ) = g1(λ) + g2(λ). (2.12)

This is called the master problem in dual decomposition. This problem can be solved

using an iterative method such as the subgradient method. It is worth noting that although

we are able to solve the dual problem and find dual optimal measures, we still cannot

guarantee that we can find primal optimal measures without introducing some acceptable

conditions on the local objective functions f1 and f2. For example, if f1 and f2 are strictly

convex, then the primal variables x1,x2,y1, and y2 found by solving two subproblems

g1 and g2, are guaranteed to converge towards the optimal solution of the primal problem

(2.5) [61].
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2.2.2 The Subgradient Method

The subgradient method has been commonly used in the literature as it is simple, amenable

to implementation, and easily generalizable. In particular, the subgradient method can be

easily combined with primal or dual decomposition techniques (cf. Section 2.2.1.1 and

Section 2.2.1.2) and produce simple distributed algorithms for a given problem. The sub-

gradient method is usually used to minimize nondifferentiable convex problems. This

method can be considered as an extended version of the gradient method, or on the other

hand, one can view the gradient method as a special case of the subgradient method when

the underlying objective function is nondifferentiable.

Consider an unconstrained optimization problem of the form

minimize f(x), (2.13)

where f : IRn → IR is convex and x ∈ IRn. Then the subgradient method to solve the

optimization problems of the form (2.13) is given by

xk+1 = xk − γkg
k, (2.14)

where k represents the iteration index, xk is an approximate solution to the problem (2.13)

at kth iteration, gk is any subgradient of f at xk (cf. Definition 17), and γk > 0 is a step size

selection at kth iteration. When the function f is differentiable, the subgradient method

(2.14) is simply reduced to the standard gradient method

xk+1 = xk − γk∇f(xk). (2.15)

Step size selection plays a major role in obtaining the convergence properties of the

method (2.14). In general, commonly used step sizes are given below [58].

1. Constant step size: γk = γ ∀ k.
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2. Square summable but not summable: The step sizes satisfy

γk ≥ 0,
∞X

k=1

γ2
k < ∞, and

∞X

k=1

γk = ∞.

Ex: γk = 1/k.

3. Nonsummable diminishing: The step sizes satisfy

γk ≥ 0, lim
k→∞

γk = 0, and
∞X

k=1

γk = ∞.

Ex: γk = 1/
√
k.

The convergence of the method (2.14) is guaranteed under various consideration using

above step size rules. Some basic convergence results are outlined below.

Theorem 8 ( [58], Section 3). Let X ⋆, the set of minimizers of the problem is nonempty,

∥gk∥ is bounded, and ∥x0 − x⋆∥ is bounded, where x⋆ ∈ X⋆ and x0 is an initial point of

the algorithm (2.14). Then in method/algorithm (2.14) it holds

fk
best − f ⋆ ≤ R2 +G2

Pk
i=1 γ

2
i

2
Pk

i=1 γi
, (2.16)

where R is s.t ∥x0 − x⋆∥ ≤ R, G is s.t ∥gk∥ ≤ G for all k, and fk
best = min

i∈{1,...,k}
f(xi).

Moreover,

1. with constant step size rule, fk
best converges to within G2γ/2 of optimal,

2. with square summable but not summable step size rule, fk
best → f ⋆, and

3. with nonsummable diminishing step size rule, fk
best → f ⋆.

Theorem 9 ( [47], Theorem 2, Section 1.4). Suppose f(x) be differentiable on IRn, ∇f

is Lipschitz continuous with constant L, and f(x) is strongly convex with constant µ. Let

γk = γ ∀k ∈ Z0
+. Then for 0 < γ < 2/L, the method (2.14) holds

∥xk − x⋆∥ ≤ cqk, (2.17)

33



where 0 ≤ q < 1.

Theorem 9 indicates that the subgradient method (2.14) can converges to a unique

global minimum point x⋆ with the rate of geometric progression (cf. Section 2.2.6), when

the function f is strongly convex and is with Lipschitz continuous gradients.

2.2.2.1 The projected subgradient method

The projected subgradient method is usually used in constrained optimization. Consider

the optimization problem

minimize f(x)

subject to x ∈ X ,
(2.18)

where f : IRn → IR and the constraint set X are convex. Then the projected subgradient

method to solve the optimization problems of the form (2.18) is given by

xk+1 = [xk − αkg
k]X , (2.19)

where gk is any subgradient of f at xk. Similar step size rules used under the subgradient

method can also be used here with similar convergence results [58]. We note that the

projected subgradient method is a one variation of the subgradient method (2.14). When

X = IRn, the projected subgradient method is simply reduced to the basic subgradient

method.

2.2.2.2 The Stochastic Subgradient Method

The stochastic subgradient method is usually used in stochastic optimization processes,

where the random variables appear in the formulation of the optimization problem. Con-

sider the unconstrained optimization problem (2.13). Then the stochastic subgradient

method to solve (2.13) is given by

x(k+1) = x(k) − γkg̃
(k), (2.20)
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where g̃(k) is a noisy subgradient (cf. [66, Section 1]) of f at x(k). Convergence results

for the stochastic subgradient method (2.20) can be found in [66, Section 3].

Next, we will discuss two commonly used distributed methods in the literature, which

are based on the subgradient methods. The first method is based on dual decomposition

methods [49–52, 67–70] and the second method is an approach coalescing consensus al-

gorithms with subgradient methods [3,4,71]. Dual decomposition methods are used when

the problem (2.1) is separable while the consensus algorithms are used when the problem

is not separable [1, Section 10].

2.2.2.3 Dual Decomposition Algorithms

Distributed algorithms using dual decomposition with subgradient methods to solve utility

based resource allocation problems (network utility maximization (NUM) problems) were

presented in [1, Section 10] and [49, 50, 70] (See also [51, 52, 67, 69]). An elegant review

on NUM problems with applications can be found in [68]. In general, a NUM problem

has the form (cf. [1, Section 10.2.3])

minimize f(x) =
PS

i=1 ui(xi)

subject to
P

i∈Sl
xi ≤ cl for all l ∈ L

xi ∈ Ii for all i ∈ S,

(2.21)

where S = {1, . . . , S} represents the set of sources in the considered network, L =

{1, . . . , L} denotes the set of undirected links, xi ∈ IR0
+ is the source rate, where i ∈ S ,

the capacity that the link l has is denoted by cl, where l ∈ L, and ui : IR0
+ → IR0

+ is

concave and an increasing utility function of source i, where i ∈ S . Moreover, the set of

sources that use the link l is denoted by Sl = {i ∈ S | l ∈ Li}, where Li ⊂ L denotes the

set of links used by source i. Then, the dual function associated with the NUM problem

(2.21) is given by

g(λ) =
SX

i=1

max
xi∈Ii

{ui(xi)− xiλi}+
LX

l=1

λlcl (2.22)
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, where λ = [λ1 . . .λL]
T and λi =

P
l∈Li

λl, i ∈ S , where λl is the Lagrange multiplier

corresponding to the link l.

The related dual problem is give by

minimize g(λ)

subject to λ ∈ IRL
+.

(2.23)

Then, the distributed subgradient method to solve the dual problem (2.23) yields the

following steps, which provides price updates (Lagrange multiplier updates) and rate up-

dates performed by links and sources respectively:

Link Price Update: λl(k + 1) = [λl(k) + γdl(k)]
+.

Source Rate Update: xi(k + 1) = xi ∈ Iiargmax {ui(xi)− xλi}.

where dl(k) =
P

i∈Sl
xi(k)− cl and k represents the iteration index.

The utility functions of NUM problems used in [49] and [50] are considered as increasing

and strictly concave. Such strict concavity assumptions are accepted as the law of dimin-

ishing returns applies in practice [68]. Nonetheless, in most practically relevant examples,

the utility functions can be considered as strongly concave [70]. Existing studies which

have explored their work over NUM problems only using concave utility functions suffer

from a slow rate of convergence O(1/
p
(k) in subgradient methods. However, the authors

in [70] have provided an improved rate of convergence O(1/k) in primal variables to the

optimal solution of the NUM problem using strongly concave utility functions. They have

used the fast gradient method (cf. [72]) to solve the dual of the NUM problem, and the

convergences in the primal variables are shown using strong duality assumptions.

2.2.2.4 Consensus Algorithms

In general, consensus algorithms are used to minimize the sum of non-separable convex

functions corresponding to multiple agents connected over a network. The dual decom-
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position algorithms based on the NUM framework (cf. Section 2.2.2.3) are limited to ap-

plications where the utility function of an individual agent depends only on the resource

allocated to that agent. However, there are many applications where the agents’ utility

can depending on the entire resource allocation vector (cf. Section 1.2). Consensus algo-

rithms are commonly used in such applications, where the related problem structures are

usually centered around consensus type problems. In particular, the considered problem

is [1, Section 10.3]

minimize
Pm

i=1 fi(x)

subject to x ∈ IRn,
(2.24)

where fi : IR
n → IR is convex and represents the local objective function (cost function)

of agent i and x ∈ IRn is a decision vector. The global consensus problem (1.1), which

we have considered in Section 1.1, is equivalent to the preceding problem (2.24) when

X = IRn. Let f ⋆ and X⋆ denote the optimal value and the set of optimal solutions to the

problem (2.24), respectively. Then, the distributed algorithm to solve the problem (2.24)

is given by

xi(k + 1) =
Pm

j=1 wij(k)xj(k)− γdi(k); i = 1, . . . ,m, (2.25)

where γ > 0 is a step size, and wij represents the weight that agent i assigns to the

estimate xj receives from a neighboring agent j. The vector di(k) is a subgradient of the

agent i’s objective function fi(x) at x = xi(k). The convergence of the algorithm (2.25)

was discussed in [71] (see also [1, Section 10.3]) by analyzing the behavior of a matrix

given by

ϕ(k, s) = A(k)A(k − 1) . . . A(s+ 1)A(s), (2.26)

where A(k) is a matrix with the vector ai = [ai1(k) ai2(k) . . . aim(k)]
T in it’s ith column

and k ≥ s. The matrix ϕ(k, s) is called the transition matrix.
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2.2.2.5 Numerical Examples

We present two examples with numerical illustrations to provide a methodical exposition

on the convergence of the gradient/subgradient method. Example 1 is based on the primal

decomposition and the Dual decomposition approach is presented in Example 2.

Example 1 (Standard Gradient Method: Primal Decomposition Approach). Consider an

unconstrained minimization problem with two users;

minimize f(x1,x2,y) = f1(x1,y) + f2(x2,y), (2.27)

where x1 ∈ IRn1 x ∈ IRn1 , x ∈ IRn2 , and f1 : IR
n
1 → IR and f2 : IR

n
1 → IR are quadratic

with the form f1(x1,y) = [xT
1 y

T]A1[x
T
1 y

T]T and f2(x2,y) = [xT
2 y

T]A2[x
T
2 y

T]T. Here

A1 ∈ IR(n1+n2)×(n1+n2) and A2 ∈ IR(n1+n2)×(n1+n2) are positive definite matrices. Let

(x⋆
1,x

⋆
2,y

⋆) and f ⋆ denote the optimal solution and the optimal value of (2.27) respec-

tively.

We use the gradient method (2.15) with primal decomposition (cf. Section 2.2.1.1) to

solve (2.27). The subproblems associated with (2.27) are given by:

Subproblem 1 : S1(y) = minimize
x1

[xT
1 y

T]A1[x
T
1 y

T]T. (2.28)

Subproblem 2 : S2(y) = minimize
x2

[xT
2 y

T]A2[x
T
2 y

T]T. (2.29)

Then the master problem in primal decomposition is given by

minimize
y

S(y) = S1(y) + S2(y). (2.30)

Subproblem (2.28) and subproblem (2.29) can be solved analytically by simple calcu-

lations. Related optimal functions are given by

Si(y) = yTAi4y + [(x⋆
i )

TAT
i3 + (x⋆

i )
TAi2]y + (x⋆

i )
TAi1x

⋆; i = 1, 2,
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where x⋆
i = argmin

xi

[xT
i yT]Ai[x

T
i yT]T and Ai =



Ai1 Ai2

Ai3 Ai4


 with Ai1 ∈ IRn1×n1 ,

Ai2 ∈ IRn1×n2 , Ai3 ∈ IRn2×n1 , and Ai4 ∈ IRn2×n2 for all i = 1, 2.

It can easily be observed that S(y) [cf. equation (2.30)] is quadratic as S1(y) and S2(y)

are quadratic. Clearly, the objective function S(y) of the master problem is differentiable.

Moreover, S1(y) and S2(y) are strongly convex since A14 and A24 are positive definite.

Thus, S(y) is also strongly convex with Lipschitz continuous gradients. Therefore, The-

orem 9 ensures that the gradient method with a constant step size rule converges to the

optimal point of the problem (2.30). We illustrate the convergence results numerically.

The Related algorithm (cf. Algorithm 1) is presented below.

Algorithm 1 Standard gradient method: Primal decomposition

Require: y0 ∈ IRn2

1: k = 0.

2: repeat

3: Solve subproblems (2.28) and (2.28) in parallel with y = y(k) to yield x
(k)
1 and

x
(k)
2 . The solutions are;

x
(k)
1 = argmin

x1

[xT
1 (y

(k))T]A1[x
T
1 (y

(k))T]T.

x
(k)
2 = argmin

x2

[xT
2 (y

(k))T]A2[x
T
2 (y

(k))T]T.

4: Compute: ∇S(y(k)) = AT
11x

(k)
1 + A13x

(k)
1 + 2A14y

(k) + AT
21x

(k)
2 + A23x

(k)
2 +

2A24y
(k)

5: y variable update: yk+1 = yk + γ∇S(yk)

6: k := k + 1.

7: until a stopping criterion true

In Algorithm 1, the step 4 follows because the gradient update is given by ∇S(y(k)) =

∇S1(y
(k))+∇S2(y

(k)), where ∇S1(y
(k)) = AT

12x
(k)
1 +A13x

(k)
1 +2A14y

(k) and ∇S2(y
(k)) =

AT
22x

(k)
2 +A23x

(k)
2 + 2A24y

(k) [cf. equation (2.30)].
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Figure 2.2: Standard gradient method with primal decomposition: Convergence of y(k)

using different fixed step sizes.
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Figure 2.3: Standard gradient method with primal decomposition: Convergence of y(k)

using different dimensions of y.

Figure 2.2 depicts the convergence of the complicating variable yk using n1 = n2 =

1 for different fixed step sizes. The figure clearly shows linear convergence rates for
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Figure 2.4: Standard gradient method with primal decomposition: Convergence of S(y(k))
using different dimensions of y.

each step size. Moreover, results show slow convergence for relatively small step sizes.

Figure 2.3 shows the convergence of y(k) for different dimensions of the complicating

variable y using n1 = 10, and with the step size γ = 0.001. Results show that the linear

convergence of y(k) to y⋆ is guaranteed regardless of the dimension of y. Finally, the

convergence of S(yk) [cf. equation (2.30)] for different dimensions of y is depicted in

Figure 2.4, again using n1 = 10, and with the step size γ = 0.001. The figure shows

S(yk) converges to f ⋆ linearly for each dimension.

Example 2 (The Basic Subgradient Method: Dual Decomposition Approach). Consider

a constrained minimization problem with two users:

minimize f(x1,y1,x2,y2) = f1(x1,y1) + f2(x2,y2)

subject to y1 = y2,

x1 ∈ X1, x2 ∈ X2, y1, y2 ∈ Y ,

(2.31)

where f1(x1,y1) = cosh(aT
1x) + aT

2x and f2(x2,y2) = cosh(bT
1y) + bT

2y with x =
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(x1,y1), y = (x2,y2), X1 ⊆ IRn1 , X2 ⊆ IRn1 , Y ⊆ IRn2 , and a1, a2,b1,b2 ∈ IR(n1+n2).

Here we use the subgradient method (2.14) with dual decomposition (cf. Section 2.2.1.2)

to solve (2.31). The dual function corresponding to the primal problem (2.31) is given by

[cf. (2.9)]

g(λ) = inf
x1∈X1, x2∈X2

y1,y2∈Y

(f1(x1,y1) + f2(x2,y2) + λT(y1 − y2)). (2.32)

The subproblems associated with (2.32) are given by:

Subproblem 1 : g1(λ) = inf
x1∈X1,y1∈Y

f1(x1,y1) + λTy1. (2.33)

Subproblem 2 : g2(λ) = inf
x2∈X2,y2∈Y

f2(x2,y2)− λTy2. (2.34)

Then the dual problem associated with the primal problem (2.31) is given by

maximize
λ∈IRn

g(λ) = g1(λ) + g2(λ). (2.35)

Clearly, the optimal solutions and the optimal value of the dual problem (2.35) can be

determined by minimizing the negative dual function −g(λ). We use h(λ) = −g(λ for

notational convenience. The equivalent minimization problem is given by

maximize
λ∈IRn

h(λ) = −g1(λ)− g2(λ). (2.36)

We determine some characteristics of the dual function g(λ) for clarity. We consider

that X1 = [−1, 0], X2 = [1, 2], Y = [−2, 2], a1 = [1 1]T , a2 = [3 − 2]T , b1 = [1 1]T ,

b2 = [−2 5]T , and the varables x1, x2, y1, and y2 are with n1 = n2 = 1. Figure 2.5

presents the graph of g(λ) and it confirms the concavity of g(λ) / convexity of −g(λ)

(cf. Remark 2). Moreover, it too confirms the nondifferentiability of g(λ). Thus we use

the subgradient method (2.14) to solve (2.36). The related subgradient algorithm is given

below (cf. Algorithm 2). Note that in Algorithm 2, the difference yk
2 −yk

1 used in the dual
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variable update (cf. step 4 of Algorithm 2) represents a subgradient gk of −g(λ) at λk.

Algorithm 2 Subgradient method: Dual decomposition

Require: λ0 ∈ IRn2

1: k = 0.

2: repeat

3: Solve subproblems (2.33) and (2.33) in parallel with λ = λ(k) to yield (x
(k)
1 ,y

(k)
1 )

and (x
(k)
2 ,y

(k)
2 ). The solutions are;

(x
(k)
1 ,y

(k)
1 ) = argmin

x1∈X1,y1∈Y
f1(x1,y1) + λ(k)y1

(x
(k)
2 ,y

(k)
2 ) = argmin

x2∈X2,y2∈Y
f2(x2,y2)− λ(k)y2

4: Compute: g(k) = yk
1 − yk

2 .

5: Dual variable update: λk+1 = λk + γkg
(k).

6: k := k + 1.

7: until a stopping criterion true

Figure 2.5 clearly shows that there exists an optimal point λ⋆ to the dual function

g(λ). Thus the set of optimal solutions X ⋆ to the problem (2.35) is nonempty. Moreover

∥g(k)∥ is bounded because, ∥g(k)∥ = ∥yk
2 − yk

1∥ ≤ 4 as y1,y2 ∈ Y = [−2, 2]. In

further, we use the initialization λ(0) = 1, and the cvx solver produces that λ⋆ ≈ 5.14. It

turns out that the distance to the dual optimal solution ∥λ(0) − λ⋆∥ ≈ 4.14 and thus it is

bounded. Therefore, all the assumptions required by the Theorem 8 are satisfied. Thus the

convergence of the subgradient method (2.14) to the optimal value of the problem (2.36)

is assured by Theorem 8. We illustrate the convergence results numerically.

Figure 2.6 depicts the convergence of negative dual function values h(λ(k)) for differ-

ent fixed step sizes γk = γ. The figure shows higher the value of the step length, the higher

the rate of convergence. Figure 2.7 illustrates the convergence of h(λ(k)) using γk = 0.1,

γk = 0.1/k, and γk = 0.1/
√
k. Results demonstrate a slower rate of convergence for

γk = 0.1/k (square summable but not summable) and γk = 0.1/
√
k (nonsummable di-
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Figure 2.5: The subgradient method with dual decomposition: The graph of the dual
function g(λ) corresponding to the primal problem (2.31).

minishing) than that of using the constant step size γk = γ. Figure 2.8 and Figure 2.9

show convergences of corresponding dual variable iterates. Results demonstrate similar

behaviors as that of Figure 2.6 and Figure 2.7.

Figures 2.6 - 2.9 only show the convergence in the dual domain. However, the con-

vergence in the primal domain is of utmost importance as our focus is to solve the primal

problem (2.31). In general, the iterates y
(k)
1 and y

(k)
2 are not feasible (i.e., y(k)

1 ̸= y
(k)
2 ).

Thus, at each iteration in the Algorithm 2, a feasible point y is obtained by averaging the

solutions of the subproblems (2.33) and (2.34), i.e., y(k) = (y
(k)
1 +y

(k)
2 )/2 [61, Section 2].

Then at each iteration, the function value f is calculated at (x(k)
1 ,x

(k)
2 ,y(k)) [cf. (2.31)].

Figure 2.10 shows the convergence of f(x(k)
1 ,x

(k)
2 ,y(k)) = f1(x

(k)
1 ,y(k)) + f2(x

(k)
2 ,y(k))

and g(λ(k)) using γk = 0.1. Moreover, the optimal value f ⋆ of the primal problem (2.31)

is also presented in the same figure. Results clearly show that both f(x
(k)
1 ,x

(k)
2 ,y(k))

and g(λ(k)) converge to f ⋆. Thus the feasible points obtained by solving the subprob-

lems (2.33) and (2.34) in the dual decomposition are guaranteed to converge towards the

optimal solution of the primal problem (2.31).
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Figure 2.6: The subgradient method with dual decomposition: Convergence of dual func-
tion values using different fixed step sizes.

2.2.3 Alternating Direction Method of Multipliers (ADMM)

ADMM is a simple but powerful method that is used in distributed convex optimization

[56]. It can be viewed as a variant of augmented Lagrangian and method of multipliers

with the blend of dual decomposition. Consider the equality constrained optimization

problem

minimize f(x)

subject to Ax = b,
(2.37)

where x ∈ IRn, A ∈ IRm×n and f : IRn → IR is convex. The Lagrangian for (2.37) is

given by

L(x,λ) = f(x) + λT(Ax− b), (2.38)

where λ denotes the dual variable. Then, the problem (2.37) usually can be solved us-

ing the dual subgradient method (i.e., the subgradient method implemented on the dual
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Figure 2.7: The subgradient method with dual decomposition: Convergence of dual
function values using constant, nonsummable diminishing, and square summable but not
summable step size rules.

domain) [cf. equation (2.14)] with steps

x(k+1) = argmin
x∈IRn

L(x,λ(k)) (2.39)

λ(k+1) = λ(k) + γk(Ax(k+1) − b), (2.40)

where γk > 0 is a suitably chosen step size (cf. Theorem 8).

The augmented Lagrangian for the problem (2.37) is given by

Lp(x,λ) = f(x) + λT(Ax − b)+ (p/2)∥Ax− b∥2, (2.41)

where p > 0 is called the penalty parameter [56, Section 2.3]. Clearly, the augmented
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Figure 2.8: The subgradient method with dual decomposition: Convergence of dual vari-
able iterates using different fixed step sizes.

Lagrangian (2.41) is the Lagrangian associated with the problem

minimize f(x) + (p/2)∥Ax− b∥2

subject to Ax = b,
(2.42)

and this problem is equivalent to the original problem (2.37). The associated dual function

is

gp(λ) = inf
x

Lp(x,λ). (2.43)

Then the related dual problem is

maximize gp(λ)

subject to λ ∈ IRn.
(2.44)
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Figure 2.9: The subgradient method with dual decomposition: Convergence of dual vari-
able iterates using different step size rules.

The problem (2.44) can solve using the subgradient method with steps

x(k+1) = argmin
x∈IRn

Lp(x,λ
(k)) (2.45)

λ(k+1) = λ(k) + p(Ax(k+1) − b). (2.46)

The steps (2.45) and (2.46) are known as the method of multipliers for solving the

problem (2.37). The only difference in the method of multipliers [cf. steps (2.45) and

(2.46)] compared with the dual subgradient method [cf. steps (2.39) and (2.39)] is, the

method of multipliers uses the augmented Lagrangian in the x minimization step [cf. step

(2.45)] and the penalty parameter p is used as the step size instead γk. However, the

method of multipliers is considered as a method of robusting the dual subgradient method

as it converges under more general conditions compared to the dual subgradient method

[56]. howbeit the method of multipliers cannot be used for decomposition even if the

primal function f(x) [cf. (2.37)] is separable, because, the augmented Lagrangian is not

separable. To address this issue, The ADMM has been introduced [73], a method that
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Figure 2.10: The subgradient method with dual decomposition: Convergence of dual
function values and primal function values evaluated at feasible points. Solid line demon-
strates the optimal value f ⋆ of the primal problem (2.31).

can be viewed as a variant of the so called method of multipliers with the blend of dual

decomposition.

In general, the problem in ADMM takes the form

minimize f(x) + g(y)

subject to Ax+By = c,
(2.47)

where x ∈ IRn, y ∈ IRm, A ∈ IRq×n, B ∈ IRq×m, and c ∈ IRq. Moreover f : IRn → IR

and g : IRm → IR are convex functions. The problem (2.47) is a variant of the problem

(2.37), where the variable x in (2.37) is split into two parts x and y in (2.47).

The augmented Lagrangian for (2.47) is given by

Lp(x,y,λ) = f(x) + λT(Ax+By − c) + (p/2)∥Ax+ 2y − c∥2, (2.48)
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where p > 0 is the penalty parameter.

Then the ADMM Algorithm to solve (2.47) is given below (cf. Algorithm 3).
Algorithm 3 Alternating Direction Method of Multipliers (ADMM)

Require: y(0) ∈ IRm and λ(0) ∈ IRq

1: k = 0.

2: repeat

3: x minimization step:

x(k+1) = argmin
x

Lp(x,y
k,λk).

4: y minimization step:

y(k+1) = argmin
y

Lp(x
⋆,y,λk)

5: Dual variable update:

λk+1 = λk + p(Ax(k+1) +By(k+1) − c). (2.49)

6: k := k + 1.

7: until a stopping criterion true

In general, ADMM can produce slow convergence to achieve high accuracy. Albeit,

ADMM is often useful practically when modest accuracy is sufficient [56]. In particular,

this is indeed the case in many kinds of large-scale problems we consider in a variety of

real life applications. We refer the readers [56] to get a thorough exposition including

the convergence properties, extensions, and variations of ADMM. Further, many other

properties of ADMM can be found in [74–76].

2.2.4 Proximal Gradient Method

The proximal gradient method is a proximal algorithm [59] that is especially well-suited

for large-scale distributed convex problems. The base point in proximal algorithms is
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evaluating a proximal operator of a function.

Definition 21 (Proximal operator). Let f : IRn → IR be a closed proper convex function

(cf. Definition 7). Then the operator proxf : IRn → IRn s.t.,

proxf (y) = argmin
x

�
f(x)− 1

2
∥x− y∥2

�

is called the proximal operator of f .

The proximal operator of the scaled function γf , where γ > 0, is given by

proxγf (y) = argmin
x

�
f(x)− 1

2γ
∥x− y∥2

�
.

This is usually called the proximal operator of f with parameter γ.

Consider the problem

minimize f(x) + g(x), (2.50)

where f : IRn → IR and g : IRn → IR are closed, proper, and convex. Moreover, f

is differentiable. Then the proximal gradient method to solve the problems of the form

(2.50) is

x(k+1) = proxγkg
(x(k) − γk∇f(x(k))), (2.51)

where k denotes the iteration index and γk represents a step size. We note that the proxi-

mal gradient method reduces to the standard gradient method when g = 0 [cf. (2.15)].

The proximal gradient method is beneficial in many aspects.

1. The algorithm smoothly works when the underlying objective functions are nondif-

ferentiable.

2. Well-suited for solving large-scale distributed optimization problems.

3. Challenging problems can be solved efficiently if the proximal operators for under-

lying functions are quickly evaluable.
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When the function f is with Lipschitz continuous gradients, the proximal gradient

method (2.51) with constant step size γk = γ ∈ (0, L] can converge with a rate O(1/k),

where L denotes the gradient Lipschitz constant [59, Section 4.2].

2.2.5 Dual Averaging

Consider an optimization problem of the form (cf. [60])

minimize
1

m

mX

i=1

fi(x)

subject to x ∈ X ,

(2.52)

where fi : IRn → IR is convex and Lipschitz continuous (cf. Definition 14) on X , for

all i = 1, . . . ,m. The set X is closed and convex. The optimization problem (2.52) is

based on functions that are distributed over a network. Let G(V,E) be an undirected

graph over a set of nodes V = {1, . . . ,m} and a set of edges E ⊂ V × V . The local

objective function fi is only known to agent i associated with the node i, and each agent

i can communicate only with its immediate neighbors j ∈ N (i) = {j ∈ V : (i, j) ∈

E}. Without loss of generality, assume that 0 ∈ X . Then, the dual averaging scheme

for solving an optimization problem of the form (2.52) is based on a proximal function

ϕ : X → IR, which is assumed to be strongly convex with constant l (cf. Definition 3).

Moreover, suppose that ϕ(x) ≥ 0, ∀x ∈ X , and ϕ(0) = 0. Then, the standard dual

averaging algorithm to solve the problem (2.52) is with updates

z(k+1) = z(k) + g(k) (2.53)

x(k+1) = argmin
x∈X

�
(z(k+1))Tx+

1

αk

ϕ(x)

�
, (2.54)

where the sequence of iterates {x(k), z(k}∞k=0 contained within X × IRn, g ∈ ∂f(x(k)),

and αk is a non-increasing step size.

Next, to obtain a distributed solution method, at each iteration k, where k ∈ Z+, each
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node i in the algorithm maintains a pair of vectors (x(k), z(k) ∈ X × IRn and computes

a subgradient gi ∈ ∂fi(x
(k)) while receiving information z

(k)
j from its neighboring nodes

j ∈ N (i). Then, the node i’s update of the currently estimated solution x
(k+1)
i is computed

using a weighted average of z(k)j , where j ∈ N (i). Let A ∈ IRm×m be a matrix of non-

negative weights that represent the structure of graph G. Moreover, assume that the matrix

A is a doubly stochastic matrix, s.t.,

mX

j=1

Aij =
X

j∈N (i)

Aij = 1 ∀i ∈ V , and

mX

i=1

Aij =
X

i∈N (j)

Aij = 1 ∀j ∈ V .

Then the distributed dual averaging method consists of the following updates:

z
(k+1)
i =

X

j∈N (i)

Ajiz
(k)
j + g

(k)
i

x
(k+1)
i = argmin

x∈X

�
(z

(k+1)
i )Tx+

1

αk

ϕ(x)

�
.

The convergence properties of the local variable xi are analyzed in [60] using the

running local average x̂i(T ) = (1/T )
PT

k=1 x
(k)
i , where T is the number of iterations.

2.2.6 Classification of Convergence Rates

The value of any practically relevant optimization method (iterative methods) relies on

its convergence properties, which determine the convergence behavior of the underlying

algorithm towards an optimal solution to the considered optimization problem. Usually,

to classify among different iterative methods, their rates of convergences are of utmost

importance. In general, convergence rates are expressed with respect to some convenient

error functions. Let us illustrate this with an unconstrained optimization problem of the
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form
minimize f(x)

subject to x ∈ IRn,
(2.55)

where f : IRn → IR is convex and differentiable. Suppose X ⋆ and f ⋆ denote the set

of optimal solutions and the optimal value of the problem (2.55) respectively. Then, the

most common error functions used in the literature to determine the rates of convergences

are

u(x(k)) = ∥f(x(k))− f(x⋆)∥2 (2.56)

u(x(k)) = ∥x(k) − x⋆∥2 (2.57)

u(x(k)) = ∥∇f(x(k))∥2. (2.58)

In some cases, the rates of convergences are established by tracking the minimum val-

ues of error functions (2.56), (2.57), and (2.58) over iterations (See Lemma 8). Moreover,

the error functions (2.56) and (2.58) (or their minimum values) are preferred over (2.57)

in the absence of strong convexity of the objective function (cf. Lemma 8).

Remark 10. It is worth noting that in Lemma 8, the objective function associated with

the error function is the negative dual function h. Although the primal objective function

is strongly convex (cf. Assumption 4.1.1 and Lemma 4), the associated negative dual

function h is only with Lipschitz continuous gradients (cf. Proposition 1).

In general, with specific conditions, the error function u(x(k)) → 0 as k → ∞, under

ideal settings, when x(k) → x⋆, where x⋆ ∈ X ⋆ (See Theorem 8: 2), 3), and Theorem 9).

However, either with some specific conditions or under nonideal settings, u(x(k)) can

converge to a neighborhood around 0. In such cases, the sequences {f(x(k))}, {x(k)}, or

{∥∇f(x(k))∥} converge to a neighborhood around the optimal value [cf. (2.56)], optimal

solution [cf. (2.57)], or 0 [cf. (2.58)].

Next, we will classify the different classes of rates of convergences of the error se-

quence {u(x(k))}. In each class, we assume that u(x(k)) → 0 for clarity. However, the
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classification is still valid as it is, when u(x(k)) ̸→ 0. The difference is, that only a posi-

tive quantity is added to the right hand side of the respective inequality. Albeit, the rate of

convergence of the respective algorithm remained unchanged [see Corollary 2: cf. equa-

tion (4.130), Corollary 3, and Corollary 4: cf. equation (4.93)].

2.2.6.1 Linear Convergence Rate

A sequence {u(x(k))} converges to zero linearly, if ∃ q ∈ (0, 1) and a ∈ IR+ s.t.,

u(x(k)) ≤ aqk, ∀k ∈ Z0
+. (2.59)

Here, the constant q is called the convergence ratio and it is the principal factor that

determines the linear convergence rate (cf. Corollary 3). The linear convergence is also

known as the geometric convergence.

2.2.6.2 Sublinear Convergence Rate

In general, the sequences which do not converge linearly are known to be convergent

sublinearly. In particular, Sublinearly convergent sequences include

u(x(k)) ≤ a

kp
, ∀k ∈ Z0

+, where a ∈ IR+ and p ∈ (0,∞). (2.60)

See Corollary 2: 2) and Corollary 4: 2) for sublinear convergences.

2.2.6.3 Superlinear Convergence Rate

A sequence {u(x(k))} is called converges superlinearly to zero, if it converges linearly

with any convergence ratio q ∈ (0, 1).
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2.2.6.4 Quadratic Convergence Rate

A sequence {u(x(k))} is called converges quadratically to zero if ∃a ∈ IR+ s.t.,

u(x(k+1)) ≤ au(x(k))2 ∀k ∈ Z0
+. (2.61)

2.3 Challenges

Distributed optimization methods have received much recent interest in many application

fields due to their potential advantages in scalability, cybersecurity, flexibility, privacy,

and robustness compared to centralized methods. However, inevitable system-specific

challenges such as limited computational power, limited communication, latency require-

ments, measurement errors, and noises in wireless channels impose restrictions on the

applicability of underlying distributed algorithms in pure form.

In particular, distributed optimization techniques that are used to solve large-scaled

distributed problems heavily depend on the exchange of information among various agents

(or subsystems) [77]. Then, the challenge in distributed operations arises from the com-

munication structure used in such networks. Usually, underlying communication net-

works have limited bandwidths in practice and thus, the perfect communication between

subsystems is not possible 1. Further, distributed optimization platforms require more

communication infrastructure as the underlying large-scaled systems consist of a large

number of agents. More importantly, the communication scheme is directly involved in

the performance of distributed algorithms which determines the convergence guarantees

of underlying distributed algorithms [25, 27, 28].

However, in addition to imperfect communication, computational errors also exist

when individual subsystems solve their local subproblems in distributed optimization

[24, 26]. More specifically, the solutions to local subproblems usually deviate from the

exact optimal solutions, depending on the error tolerances of solvers and the type of the

1Typically, the subsystems in the communication network exchange quantized information among sub-
systems
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problem. In general, the accumulation of subproblem errors in iterative algorithms may

cause to build a considerable error, which directly affects the convergence properties of

underlying algorithms. Moreover, approximation errors [20,21], noise induced in wireless

settings [2], and measurement errors are some other challenges in distributed optimization

that impact the exactness of underlying distributed algorithms.

2.3.1 Distributed Optimization over Non-ideal Settings

Distributed methods have been extensively analyzed in many works under ideal settings

[78–81]. Moreover, convergence properties of exact algorithms are thoroughly analyzed

under both constant and nonsummable step size rules in the literature (cf. Chapter 2.2).

However, as we discussed in the preceding section, it restricts the application of exact

algorithms in many real world applications. Thus, the analysis of distributed algorithms

under non-ideal settings has been an appealing area of study [11–28]. An elegant discus-

sion on the influence of noise in subgradient methods can be found in [11] under both

differentiable and nondifferentiable settings (see [11, section 4, and section 5.5]). More

importantly, [11] provides a repository of techniques that can serve as building blocks

that are indispensable when analysing algorithms with imperfections. Algorithms based

on combining consensus algorithms with subgradient methods (cf. section 2.2.2.4) under

nonideal settings have been discussed in [12–14]. The key idea of this type of algorithms

is to align the primal variables of each subsystem with its neighbors, followed by a lo-

cal update of the variables at each subsystem aiming to minimize its own cost function.

When the subsystems are communicating their variables to neighbors for aligning the it-

erates, either a deterministic or dynamic quantization of primal variables is considered.

Under assumptions such as uniform boundedness of subgradients, among others, error

bounds for suboptimality are derived in [12]. The boundedness assumption might restrict

the range of applicability of the methods. For example, in many applied fields, it is now

commonplace to form the objective function with a quadratic regularization term, where

the bounded assumption is no longer affirmative. The quantization mechanism consid-
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ered in [13] incorporates a zooming-in strategy that underlies an asymptotic decay of the

quantization errors. Consequently, the convergence of the algorithm to the optimal value

is guaranteed, where assumptions such as, uniform boundedness of subgradients have

again been used. A similar dynamic quantization mechanism is adopted in [14], where

the resulting quantization errors are again diminishing. Together with stronger assump-

tions, authors claim, not only the optimality but also better convergence rates. Although

a diminishing error is favorable from a standpoint of establishing desirable convergences,

it cannot capture common scenarios where the error is persistent throughout the iterations

of the algorithm, e.g., measurement errors.

Inexact gradient methods are analysed in [15–23]. These methods are directly related

to dual decomposition methods. It is usually the case that subgradient type algorithms are

used to solve dual problems in a dual decomposition setting. The effect of noise in sub-

gradient type methods has been discussed in [15,16] with compact constraint sets. From a

distributed optimization standpoint with dual decomposition, compactness is a restriction,

because constraint sets appearing in dual-domain usually turn out to be noncompact. Au-

thors in [17] have discussed the convergence properties of gradient methods with inexact

gradients using a general continuously differentiable function (possibly nonconvex) with

Lipschitz continuous gradients. The errors are assumed to be diminishing and dependent

on the current step size and the exact gradient. However, such impositions seem like a

restriction in practice as we have already pointed out in the preceding discussion. The in-

fluence of deterministic and bounded errors in gradients is considered in [18], where the

feasible set is assumed to be compact. Recall that compactness assumption is often too

restrictive for dual decomposition. The exposition given in [19] includes an inexact first-

order oracle, based on what the behavior of several first-order methods under nonideal

conditions has been analyzed. Despite its generality, an approximate subgradient is not

necessarily be fleshed from the accompanying structure of the inexact oracle, unless the

underlying constrain set is bounded. Subgradient errors, from a machine learning context,

are considered in [20]. Errors are modeled from a stochastic standpoint and are assumed
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to be biased and consistent. Biasedness can directly be linked with bounded errors from

a deterministic point of view. Roughly speaking, the notion of consistency is dictated by

a choice of a stochastic limit that decreases exponentially with the sample size. The latter

assumption appears to be meaningful, especially in machine learning settings. However,

in a distributed optimization setting with dual decomposition, one has to be cautious. Un-

like a learning setting, in which regulating errors by an adequate choice of the sample size

is at our disposal, in the dual decomposition setting the underlying errors are not necessar-

ily controllable. Authors in [21] studied a class of problems where the classic stochastic

optimization is a special case. Their assertions rely on assumptions such as a bounded

second moment of the approximate subgradients. Errors in dual decomposition settings

may not fit there, because the assumption can directly impose a requirement on the norm

of the true subgradients. References [22, 23] discuss means of modeling inexactness of

subgradients again from stochastic/deterministic points of view. They appear to be readily

applied in a distributed optimization setting with dual decomposition.

Inexact gradient methods within the dual machinery are discussed in [24–28]. Rather

than exploiting duality for enabling distributed optimization, authors in [24] uses it in a

centralized setting. Only a set of inequality constraints are dualized, assuming that the

other constraints are efficiently handled. The related Lagrangian minimization is con-

sidered to be inexact, which in turn leads to an inexact subgradient method for the dual

variable update. Convergence results associated with primal feasible points are asserted

for a very special case of a model predictive control problem, but not in general. Prob-

lems of the form of sharing are considered in [25, 26]. Dual decomposition is applied to

decouple the problem considered in [25], where the related dual function turns out to be

defined on scalars. The dual gradient, which is a scalar, is quantized, where an additional

assumption on the compactness of the dual-domain is artificially imposed for tractability.

The authors yield the feasibility of the primal points returned by their algorithms by re-

stricting the updates of the dual variable to lie in a region with positive dual gradients. In

a more general sharing problem, for example, a dual function defined on vectors, one has
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to be cautious, however, because the technique adopted in [25] does not apply directly.

A more general formulation is considered in [26], despite impositions on the structure of

problem data that enable the dual decomposition. An averaging of primal variables is in-

troduced that appears to minimize the primal feasibility violation. However, unlike [25],

the primal feasibility of the iterates is not guaranteed in [26]. References [27, 28] dis-

cuss gradient methods, together with their applications to distributed optimization under

limited communication settings. The inexactness of the algorithms is solely due to the

quantization errors of gradients. The quantization considered in [27] is based on a finite

set of points on a unit sphere. Roughly speaking, the quantized vectors are such that

the angle between any normalized gradient and some quantized vector is always acute.

This indirectly imposes conditions on the inexactness or the underlying error. The use of

normalized gradients, together with the preceding quantization form a sort of zooming-in

and quantized policy that imposes errors to diminish as the iteration number increases,

fostering the convergence of iterates to optimality. A related zooming-in and quantized

policy are discussed also in [28]. Similar to [27], the modeling assumptions impose con-

ditions on errors to diminish as the iteration number increases. We note that, unlike a

quantization setting, in which one is allowed to control the error, in a general setting, it is

not necessarily the case that controlling errors is at one’s disposal.
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Chapter 3

Materials and Methods

In this chapter, we introduce the main problem that we consider in this study and dis-

cuss the related distributed solution methods based on dual decomposition. Chapter 3.1

introduces the main problem. The dual decomposition approach is discussed in Chap-

ter 3.2 and the imperfect coordination between subsystems is considered in Chapter 3.3.

Finally, related distributed algorithms over non-ideal settings are presented in Chapter 3.4.

3.1 Problem Formulation

We consider a problem of minimizing a global convex objective function, which is a sum

of local convex objective functions under general convex constraints, a formulation com-

mon to many types of large-scale signal processing and machine learning applications. In

particular, a collection of m subsystems, where m ∈ Z+ is considered, who jointly solve

the optimization problem

minimize
Pm

i=1 fi(z)

subject to z ∈ Y ,
(3.1)

where the variable is z ∈ IRn and Y ⊆ IRn is considered as a common constraint set.

Each fi : IRn → IR is a strictly convex function associated with subsystem i, for all

i ∈ {1, . . . ,m}. Without loss of generality, we let dom fi = IRn for all i ∈ {1, . . . ,m} 1.

Here z is called the public variable. This problem is commonly known as the global

consensus problem, a key formulation prevalent in statistical and machine learning appli-

cation domains. Other real-world applications of (3.1) include networked vehicles, smart

power grids, control of UAV/multiple robots, and TCP control systems, [82, 83]. We

1Otherwise, we can encode respective domain information into each fi by redefining it as fi := fi +
δdom fi (cf. Definition 16). Still, all the mathematical substantiations remain intact.
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1 2 3 m

z

y1 y2 y3 ym

Figure 3.1: Decomposition Structure: There are m subsystems with the public variable z.
Functions associated with subsystems are fi(z), i ∈ {1, . . . ,m}.

made the following assumption on the constraint set Y and each local objective function

fi, i = 1, . . . ,m.

Assumption 1 (Closedness). The set Y and the functions fis are closed.

Here it is important to highlight that all our derivations and results can easily be ex-

tended to a more general formulation, where fis depend only on a part of the variable z.

The related generalized problem is called the general consensus problem. Related results

are presented in Chapter 4.3.

Problem (3.1) can also be considered in centralized settings, where a certain central

authority has the accessibility to all local objective functions. However, in practice, the

unprecedented growth of the size of modern datasets, decentralized collection of datasets,

and the underlying high-dimensional decision spaces, prevent the applicability of central-

ized methods such as interior-point algorithms [57]. In fact, they entail the development

of salable distributed solution methods for problems of the form (3.1), [56, 59]. A com-

monly used technique to yield distributed solution methods is based on the dual decompo-

sition [61], where the decomposition structure of the underlying problem places a crucial

role (see Figure 3.1).

3.2 Dual Decomposition Approach

First, associated with each subsystem i, a private variable yi is introduced instead of the

global variable z, together with necessary constraints to ensure their consistency z = yi,

for all i = 1, . . . ,m. Thus, the problem (3.1) is equivalently reformulated as follows:
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minimize f(y) =
Pm

i=1 fi(yi)

subject to yi ∈ Y , i = 1, . . . ,m

yi = yi+1, i = 1, . . . ,m− 1,

(3.2)

where yi ∈ IRn, i = 1, . . . ,m, are newly introduced local versions of the public variable

z and y = [yT
1 . . . yT

m]
T. It can easily be observed that the objective is now separable.

Let λi ∈ IRn denote the Lagrange multiplier associated with the consistency constraint

yi = yi+1, i = 1, . . . ,m− 1 and λ = [λT
1 . . . λT

m−1]
T for clarity. Then, the dual function

g : IRn(m−1) → IR corresponding to (3.2) is given by

g(λ) = inf
yi∈Y, i=1,...,m

"
mX

i=1

fi(yi) +
m−1X

i=1

λT
i (yi−yi+1)

#
(3.3)

= inf
y1∈Y

�
f1(y1) + λT

1y1

�
+

m−1X

i=2

inf
yi∈Y

�
fi(yi) + (λi − λi−1)

Tyi

�

+ inf
ym∈Y

�
fm(ym)− λT

m−1ym

�
.

(3.4)

Here, the last equality (3.4) follows because, for fixed λ, the infimization can be per-

formed in parallel by each subsystem. Thus, associated with each subsystem, there is a

subproblem that can be handled locally. The related subproblems are given as follows:

Subproblem 1 : inf
y1∈Y

�
f1(y1) + λT

1y1

�
(3.5)

Subproblem i : inf
yi∈Y

�
fi(yi) + (λi − λi−1)

Tyi

�
, i = 2, . . . ,m− 1 (3.6)

Subproblem m : inf
ym∈Y

�
fm(ym)− λT

m−1ym

�
(3.7)

Then, the dual problem is given by

maximize
λ∈IRn(m−1)

g(λ). (3.8)

Next, the dual problem (3.8) can be solved using an iterative algorithm such as the
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classical (or basic) subgradient method. The respective dual variable update (λ update) is

given by

λ(k+1) = λ(k) + γkd
(k), (3.9)

where γk > 0 is the step size and d(k) is a supergradient (cf. Remark 8) of g at λ(k) ∈ IRn,

and k indicates the iteration index. Equation (3.4) clearly shows that the subproblem

coordination is solely required to jointly construct the supergradient d(k) in (3.9) at iter-

ate k. Related distributed algorithm (dual decomposition algorithm, cf. Algorithm 4) is

presented below.

Algorithm 4 Dual Decomposition Algorithm

Require: λ(0) ∈ IRn(m−1).

1: k = 0.

2: repeat

3: Solve subproblems in parallel with λ = λ(k) to yield y(k) ∈ IRnm.

▷ Local computations, cf. (3.5), (3.6), and (3.7)

4: Compute d(k) =
��
y
(k)
1 −y

(k)
2

�T
. . .

�
y
(k)
m−1−y

(k)
m

�T�T. ▷ Subproblem coordination

5: λ(k+1) = λ(k) + γkd
(k). ▷ Dual variable update

6: k := k + 1.

7: until a stopping criterion true

Under mild technical conditions such as the gradient Lipschitz continuity or strong

convexity of the global objective function f , the convergence of λ(k) to the optimal so-

lution λ⋆ of (3.8) can be ensured, i.e., λ(k) → λ⋆ [11, Section 1.4.2]. Thus, together

with additional assumptions such as the strong duality between (3.2) and (3.8), at the ter-

mination of the algorithm, a reasonable guess for the solution y⋆ of (3.2) is obtained by

averaging the solutions of the subproblems, i.e., (1/m)
Pm

i=1 y
(k)
i [84, Section 5.5.5].
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3.3 Imperfect Coordination Between Subsystems

It is worth emphasizing that, in practice, the subproblem coordination cannot be per-

formed in pure form due to system-specific restrictions imposed on real world systems.

Thus, we consider the case where the subproblem coordination in each iteration k is not

perfect (cf. line 4 of Algorithm 4). In particular, instead of the exact y(k)
i , a distorted

vector ŷ(k)
i is used when computing d(k) in (3.9). As a result, instead of the exact d(k), a

distorted vector d̂(k) given by

d̂(k) =
��
ŷ
(k)
1 − ŷ

(k)
2 )T . . . (ŷ

(k)
m−1 − ŷ(k)

m

�T�T (3.10)

is used in the dual variable update of Algorithm 4 (cf. line 5).

Next, we denote by r
(k)
i ∈ IRn, the distortion associated with y

(k)
i , for all i = 1, . . . ,m

and k ∈ Z0
+. Then, the distorted vector ŷ(k)

i is simply given by

ŷ
(k)
i = y

(k)
i + r

(k)
i . (3.11)

However, if such a distortion is associated with an underlying system, then the analysis

of how the related distributed algorithms might develop to model those imperfections is

of utmost importance.

3.4 Distributed Algorithms over Non-ideal Settings

In this section, we propose two distributed algorithms to deploy over various non-ideal

settings, which impose restrictions on the exactness of the underlying algorithms. It is

worth noting that the distortion r
(k)
i can model numerous inexact settings as remarked

below.

Remark 11. The additive distortion r
(k)
i can model errors in many large-scale optimiza-

tion problems, including quantization errors [25, 27, 28], approximation errors [20, 21],
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errors due to subproblem solver accuracy [24,26], noise induced in wireless settings [2],

and measurement errors, among others.

Despite the generality of r(k)i , we refer to it as a distortion due to imperfect coordination,

unless otherwise specified. When modeling the distortion r
(k)
i , we assume nothing ex-

cept the norm boundedness of the distortion. More specifically, we have the following

assumption about the distortion r
(k)
i .

Assumption 2 (Absolute Deterministic Distortion). The distortion r
(k)
i associated with

y
(k)
i , i = 1, . . . ,m, k ∈ Z0

+ is bounded by εi ∈ IR, i.e.,

∥r(k)i ∥ ≤ εi, i = 1, . . . ,m, k ∈ Z0
+. (3.12)

That is the coordination of y(k)
i , i = 1, . . . ,m, k ∈ Z0

+, always undergoes a given

absolute error εi. Note that the distortion r
(k)
i need not be random. If it is random, it need

not be stationary, uncorrelated, or even zero mean.

Our exposition of imperfect coordination is centered on two variants of Algorithm 4.

The first algorithm is a partially distributed algorithm (cf. Algorithm 5), where a central

node solely performs the subproblem coordination. The second one is fully distributed

(cf. Algorithm 6), in the sense that there is no central authority. Any subsystem commu-

nicates at most with two other subsystems, during the subproblem coordination step. In

the sequel, details of the two algorithms are outlined.

3.4.1 Partially Distributed Algorithm

CN

1 2 3 m

ŷ
(k)
1

λ
(k+1)
1

ŷ
(k)
m

λ(k+1)
m

Figure 3.2: Graph of the Communication Structure: Partially Distributed Algorithm
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In the proposed partially distributed algorithm, a central node (CN), who is involved

during the subproblem coordination 2 is available, in addition to the subsystems. The

subproblem coordination is enabled with the presence of the following resources.

1. An error-free broadcast channel between CN and subsystems,

2. A communication channel between each subsystem and the CN, which conforms

to the absolute error conditions specified in Assumption 2.

See Figure 3.2 for an illustration. The proposed algorithm is summarized below.

Algorithm 5 Partially Distributed Algorithm

Require: λ(0) ∈ IRn(m−1); λ(j)
0 = λ(j)

m = 0 ∈ IRn, j ∈ Z0
+.

1: k = 0.

2: CN broadcasts λ(0) to subsystems. ▷ Initial dual variables

3: repeat

4: ∀i, subsystem i computes y(k)
i by solving ▷ Local computations

minimize
yi∈Y

fi(yi) +
�
λ

(k)
i − λ

(k)
i−1

�T
yi.

5: ∀i, subsystem i transmits y(k)
i to CN. ▷ Subproblem coordination: stage 1

6: ∀i, CN receives ŷ(k)
i , cf. (3.11). ▷ Subproblem coordination: stage 2

7: CN computes d̂(k) =
��
ŷ
(k)
1 − ŷ

(k)
2

�T
. . .

�
ŷ
(k)
m−1 − ŷ

(k)
m

�T�T
▷ Subproblem

coordination: stage 3

8: CN computes λ(k+1) = λ(k) + γkd̂
(k) ▷ Dual variable update

9: CN broadcasts λ(k+1) to subsystems. ▷ Current dual variables

10: k := k + 1

11: until a stopping criterion true

It is worth noting that, the distortion r
(k)
i can model persistent measurement errors or

inevitable approximation errors that occur as a result of attempts to reduce the computa-

tional complexity in large-scale machine learning algorithms [85, 86].
2The role of CN is virtual in the sense that, an arbitrarily chosen subsystem itself can act as the CN.
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Each operation listed from lines 4− 6 is conducted in parallel among i ∈ {1, . . . ,m}.

Note that the subproblem coordination is conducted via the intervention of CN (cf. steps

5-7 of Algorithm 5). Subproblem coordination stage 2 (see line 6) is the source of the

imperfect coordination, where an absolute deterministic distortion is introduced [cf. As-

sumption 2].

3.4.2 Fully Distributed Algorithm

A fully distributed algorithm is presented here in which a central node is not available. In

particular, it turns out that the decomposition structure (cf. Figure 3.1) considered when

reformulating problem (3.2) suggests a subproblem coordination mechanism where only

the communication between neighboring subsystems is necessary. The communication

structure is depicted in Figure 3.3. Associated with each i, i = 1, . . . ,m, the following

resources are there to enable the subproblem coordination:

1 2 3 1 1 m
y
(k)
1

y
(k)
2

y
(k)
2

y
(k)
3

y
(k)
m−2

y
(k)
(m−1)

y
(k)
m−1

y
(k)
m

Figure 3.3: Graph of the Communication Structure: Fully Distributed Algorithm

1. An error-free communication channel from subsystem i− 1 to i,

2. An error-free communication channel from subsystem i+ 1 to i.

In this context, the distortion r
(k)
i is due to inevitable approximation errors that come

about as a result of attempts to reduce communication overhead, see [25, 28].

The resulting algorithm is summarized below.

Algorithm 6 Fully Distributed Algorithm

Require: λ(0) ∈ IRn(m−1); λ(j)
0 = λ(j)

m = 0 ∈ IRn, j ∈ Z+; y(j)
0 = y

(j)
m+1 = 0 ∈ IRn, j ∈

Z+.

1: k = 0.
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2: repeat

3: ∀i, subsystem (SS) i computes y(k)
i by solving ▷ Local computations

minimize
yi∈Y

fi(yi) +
�
λ

(k)
i − λ

(k)
i−1

�T
yi.

4: ∀i, SS i transmits ŷ(k)
i to i− 1 and i+ 1, cf. (3.11). ▷ Subproblem coordination:

stage 1

5: ∀i, SS i receives ŷ(k)
i−1 and ŷ

(k)
i+1 form i−1 and i+1. ▷ Subproblem coordination:

stage 2

6: ∀i, SS i computes d̂(k)
i =

�
(ŷ

(k)
i−1 − ŷ

(k)
i )T (ŷ

(k)
i −ŷ

(k)
i+1)

T
�T. ▷ Subproblem

coordination: stage 3

7: ∀i, SS i computes
�
(λ

(k+1)
i−1 )T (λ

(k+1)
i )T

�T
=
�
(λ

(k)
i−1)

T (λ
(k)
i )T

�T
+γkd̂

(k)
i . ▷ Local

dual variable update

8: k := k + 1

9: until a stopping criterion true

Note that each operation listed from lines 3 − 7 is conducted in parallel among i ∈

{1, . . . ,m}. Unlike the Algorithm 5, here the subproblem coordination is solely achieved

by the subsystem’s communication with its neighbors and local computations (cf. lines

4-6 of Algorithm 6). Subproblem coordination stage 1 (see line 4) is the source of the

imperfect coordination, where an absolute deterministic distortion is introduced (cf. As-

sumption 2).
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Chapter 4

Results and Discussion

4.1 Analysis of the properties of the Dual Function

The dual function g [cf. Equation (3.3)] associated with the primal problem (3.2) plays a

major role when asserting convergence properties of Algorithm 5 and Algorithm 6. Thus,

the focus of this chapter is to provide extensive analysis on the properties of the dual func-

tion g. In particular, we proceed toward hypothesizing some important characteristics of

underlying primal functions and derive useful results, which in turn are used in asserting

convergence properties of underlying algorithms.

4.1.1 Dual Function as a Restriction of f ∗

First, we highlight an important relationship between g, and the conjugate function f ∗

(cf. Definition 15) of f + δȲ
1, where Ȳ denotes the m-fold Cartesian product of Y , i.e.,

Ȳ = Ym = Y × Y . . .× Y| {z }
m times

. (4.1)

The result is outlined as follows.

Lemma 3. Let f ∗ : IRnm → IR denote the conjugate function of f + δȲ . Then

g(λ) = −f ∗(ATλ), (4.2)

1Recall that f is the objective function of problem (3.2) and δȲ is the indicator function of the set Ȳ
(cf. Definition 16).
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where A is an n(m− 1)× nm matrix with the special block structure given by:

A =




In −In 0 · · · · · · · · · 0

0 In −In 0 · · · · · · 0

0 0 In −In 0 · · · 0

...
... . . . . . . . . . . . . ...

0
... . . . 0 In −In 0

0 0 · · · · · · 0 In −In




. (4.3)

Proof. It is straightforward to see that the equality constraint yi = yi+1, i = 1, . . . ,m−1

of problem 3.2 is equivalent to Ay = 0 [cf. the structure of matrix A given in (4.3)]. Then,

g(λ) = inf
y∈Ȳ

(f(y)− λTAy) (4.4)

= inf
y

�
f(y) + δȲ(y)− λTAy

�
(4.5)

= −sup
y

�
(ATλ)Ty − f(y)− δȲ(y)

�
(4.6)

= −f ∗(ATλ), (4.7)

where (4.4) directly follows from (3.3), (4.5) follows from the definition of δȲ , (4.6)

follows simply by replacing inf by sup, and finally, (4.7) follows from the definition of

the conjugate function of f + δȲ .

Lemma 3 indicates that the dual function g is a restriction of f ∗ to a linear space.

4.1.2 Lipschitzian Properties

In general, The Lipschitzian property of the gradient (gradient Lipschitz continuity) is

a common characteristic that is satisfied by most underlying objective functions, when

asserting convergence results. Thus, we now furnish a simple, but important result that

verifies the Lipschitzian properties of the dual function g of the problem (3.2) (cf. Defini-

tion 14).
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First, we made the following hypothesis that is satisfied by most standard utility func-

tions considered in the literature.

Assumption 4.1.1 (Strongly convex local objectives at subsystems). The local objective

functions fis in problem (3.2) are strongly convex with constant µi > 0, i = 1, . . . ,m.

Next, the strong convexity of the global objective function f of the problem (3.2) is

verified by the following Lemma.

Lemma 4. Suppose Assumption 4.1.1 holds. Then, the objective function f of prob-

lem (3.2) given by f(y) =
Pm

i=1 fi(yi) is strongly convex with constant µ = mini µi.

Proof. The condition that fi is strongly convex with constant µi > 0 is equivalent to the

strong monotonicity condition of ∂fi (cf. Definition 13 and Theorem 2), i.e.,

(vi − v̄i)
T(xi − x̄i) ≥ µi∥xi − x̄i∥2, where vi ∈ ∂fi(xi), v̄i ∈ ∂fi(x̄i). (4.8)

We now let v = [vT
1 . . . vT

m]
T, v̄ = [v̄T

1 . . . v̄T
m]

T, x = [xT
1 . . . xT

m]
T, x̄ = [x̄T

1 . . . x̄T
m]

T,

and put together the strong monotonicity property (4.8) for all i ∈ {1, . . . ,m}. Then

(v − v̄)T(x− x̄) =
mX

i=1

(vi − v̄i)
T(xi − x̄i) (4.9)

≥
mX

i=1

µi∥xi − x̄i∥2 (4.10)

≥ min
j∈{1,...,m}

µj

mX

i=1

∥xi − x̄i∥2 (4.11)

= min
j∈{1,...,m}

µj ∥x− x̄∥2, (4.12)

where (4.9) follows from that v ∈ ∂f(x), v̄ ∈ ∂f(x̄) ⇐⇒ vi ∈ ∂fi(xi), v̄i ∈ ∂fi(x̄i)

for all i ∈ {1, . . . ,m}2, (4.10) is immediate from (4.8), (4.11) trivially follows since

minj µj ≤ µi, ∀ i, and (4.12) follows from the definition of ℓ2-norm. Then, the strong

convexity of f with constant µ = mini µi is immediate from the equivalence between

strong monotonicity of ∂f and strong convexity of f (cf. Theorem 2).
2In Particular, note that ∂f(x) = ∂f1(x̄1)× ∂f2(x̄2)× · · · × ∂fm(x̄m).

72



Then, the strong convexity of f + δȲ is an immediate consequence of Lemma 4. The

result is outlined in the following remark.

Remark 12. Suppose Assumption 4.1.1 holds. Then, the function f+δȲ is strongly convex

with constant µ = mini µi.

Proof. This is immediate from Lemma 4 and the convexity of Ȳ [cf. equation (4.1)].

Finally, the following result claims the Lipschitzian property of the gradient of the

dual function g.

Proposition 1. Suppose Assumption 1 and Assumption 4.1.1 hold. Then the dual function

g is differentiable. Moreover, the gradient ∇g of g is Lipschitz continuous with constant

(1/µ) (2 + 2 cos(π/m)), where µ = mini µi.

Proof. Under Assumption 1, it is immediate that function f + δȲ is closed (cf. Defini-

tion 7). This together with [45, Theorem 11.13], ensures the differentiability of f ∗. Thus,

the differentiability of g follows directly from Lemma 3.

To show the Lipschitz continuity of ∇g, let us first assert the property for ∇f ∗. Recall

that the function f ∗ is the conjugate function of f + δȲ . Assumption 1 ensures that the

function f + δȲ is closed and convex, and so is f ∗ by [45, Theorem 11.1]. Moreover,

From Remark 12, we have that f + δȲ is strongly convex with constant µ = mini µi.

Thus, by invoking the equivalence of [45, Proposition 12.60: (a) and (b)], together with

the biconjugate property (f ∗)∗ = f the Lipshitz continuity of the gradients ∇f ∗ with

constant 1/µ is immediate. Then for any γ, δ ∈ IRn(m−1),

∥∇g(γ)−∇g(δ)∥ = ∥∇f ∗(ATγ)−∇f ∗(ATδ)∥ (4.13)

= ∥A
�
∇f ∗(ATγ)−∇f ∗(ATδ)

�
∥ (4.14)

≤ ∥A∥2∥∇f ∗(ATγ)−∇f ∗(ATδ)∥ (4.15)

≤ ∥A∥
µ

∥ATγ −ATδ∥ (4.16)

≤ ∥A∥2
µ

∥γ − δ∥ (4.17)
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=
λmax(AAT)

µ
∥γ − δ∥ (4.18)

=
2 + 2 cos(π/m)

µ
∥γ − δ∥, (4.19)

where (4.13) follows from Lemma 3, (4.14) is immediate from chain rule properties,

(4.15) is immediate from spectral norm properties, (4.16) follows from the Lipshitzian

properties of ∇f ∗, (4.17) is again from spectral norm properties, (4.18) is from that

∥A∥22 = λmax(AAT), and finally (4.19) is immediate from the block-tridiagonal struc-

ture of AAT [cf. (4.3) and [87, p. 565]].

4.1.3 Strong Convexity Properties

The closedness of f (cf. Assumption 1), together with the Legendre-Fenchel transform

[45, Theorem 11.1], allows a dual result of Proposition 1 to be worked out, again by using

[45, Proposition 12.60: (a),(b)]. Let us first outline a natural assumption that emerges in

this regard.

Assumption 4.1.2 (Gradient Lipschitz continuous local objectives at subsystems). The

set Y in problem (3.2) equals IRn. Moreover, fis are differentiable and the gradients ∇fis

are Lipschitz continuous on IRn with constant Li > 0, i = 1, . . . ,m.

Lemma 5. Suppose Assumption 4.1.2 holds. Then, the gradient ∇f of f is Lipschitz

continuous on IRn with constant L = maxi Li.

Proof. Let x = [xT
1 . . . xT

m]
T, x̄ = [x̄T

1 . . . x̄T
m]

T. Then

∥∇f(x)−∇f(x̄)∥ =

�
[∇f1(x1)−∇f1(x̄1)]

T · · · [∇fm(xm)−∇fm(x̄m)]
T�T



(4.20)

=

vuut
mX

i=1

∥∇f(xi)−∇f(x̄i)∥2 (4.21)

≤

vuut
mX

i=1

L2
i ∥xi − x̄i∥2 (4.22)
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≤ max
j∈{1,...,m}

Lj

vuut
mX

i=1

∥xi − x̄i∥2 (4.23)

= max
j∈{1,...,m}

Lj ∥x− x̄∥, (4.24)

where (4.20) follows directly from the definition of the gradient, (4.21) follows simply

from the definition of ℓ2-norm (cf. Definition 8), (4.22) is immediate from the Lipschitz

continuity of ∇fis, and (4.23) and (4.24) follow trivially from simple manipulations.

Finally, the following lemma claims the strong convexity property of the negative dual

function −g under mild conditions.

Proposition 2. Suppose Assumption 4.1.2 holds. Then the function −g is strongly convex

with constant (1/L) (2− 2 cos(π/m)), where L = mini Li.

Proof. To show the result, we use the equivalence between the strong convexity and the

strong monotonicity condition (cf. Definition 13 and Theorem 2).

Strong convexity of f ∗ is immediate by invoking Lemma 5 together with the equiva-

lence of [45, Proposition 12.60: (a)-(b)], i.e.,

(y − ȳ)T(ν − ν̄) ≥ (1/L)∥ν − ν̄∥22, y ∈ ∂f ∗(ν), ȳ ∈ ∂f ∗(ν̄). (4.25)

It remains to be shown the strong monotonicity of ∂(−g). Let h = −g for clarity.

Moreover, for any γ, δ ∈ IRn(m−1), let x ∈ ∂h(γ) and x̄ ∈ ∂h(δ) which entails

x ∈ A∂f ∗(ATγ) and x̄ ∈ A∂f ∗(ATδ). (4.26)

Then,

(x− x̄)T(γ − δ) = (Ay −Aȳ)T(γ − δ), y ∈ ∂f ∗(ATγ), ȳ ∈ ∂f ∗(ATδ) (4.27)

= (y − ȳ)T (ATγ −ATδ), y ∈ ∂f ∗(ATγ), ȳ ∈ ∂f ∗(ATδ) (4.28)

≥ 1

L
∥ATγ −ATδ∥22, x ∈ ∂h(γ), x̄ ∈ ∂h(δ) (4.29)
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=
1

L
(γ − δ)TAAT(γ − δ), x ∈ ∂h(γ), x̄ ∈ ∂h(δ) (4.30)

≥ λmin(AAT)

L
∥γ − δ∥22, x ∈ ∂h(γ), x̄ ∈ ∂h(δ) (4.31)

=
2− 2 cos(π/m)

L
∥γ − δ∥22, x ∈ ∂h(γ), x̄ ∈ ∂h(δ). (4.32)

The first equality (4.27) follows from (4.26) since x ∈ ∂h(γ) and x̄ ∈ ∂h(δ) =⇒

∃ y ∈ ∂f ∗(ATγ) such that x = Ay and ∃ ȳ ∈ ∂f ∗(ATδ) such that x̄ = Aȳ. The

equality (4.28) is immediate from (4.27). The inequality (4.29) is obtained from (4.25)

and (4.30) follows trivially from the expansion of ∥ · ∥22. Finally, (4.31) and (4.32) follow

from properties of eigenvalues [cf. equation (4.3) and [87, p. 565]].

4.1.4 Bounding Properties for the Primal Error

In this study, the convergence properties of our proposed algorithms are analyzed using

dual decomposition. However, if the algorithms are modeled as they originated from

the dual-domain, then the analysis of how they might evolve into the primal-domain is

of utmost importance. In this respect, the focus of this section is to build useful relations

among dual and primal variables, which in turn are used in subsequent sections to analyze

the convergence properties of algorithms in the primal domain. In particular, bounding

relations in terms of distance to the dual optimal value g(λ⋆) − g(λ), distance to the

primal optimal value ∥f(y(λ)) − f(y⋆)∥, and distance to the primal optimal solution

∥y(λ)− y⋆∥ are explicitly derived (cf. Lemma 6).

First, let us invoke the strong duality assumption (cf. section 1.5.3.3), one of the stan-

dard assumptions which hold in many practically relevant convex optimization problems.

Assumption 3 (Strong Duality). The optimal values p⋆ and d⋆ of the problems (3.2) and

(3.8), respectively, are attained. Moreover, strong duality between (3.2) and (3.8) holds,

i.e.,

p⋆ = f(y⋆) = g(λ⋆) = d⋆, (4.33)

for some y⋆ ∈ {y ∈ IRnm | ∀ i yi ∈ Y , Ay = 0} and for some λ⋆ ∈ IRn(m−1), where A
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is defined in (4.3).

Lemma 6. Suppose Assumption 1, Assumption 4.1.1, and Assumption 3 hold. If the func-

tions fi, i = 1, . . . ,m are differentiable, then

1. g(λ⋆)− g(λ) ≥ µ/2 ∥y(λ)− y⋆∥2 for all λ ∈ IRn(m−1),

2. g(λ⋆)− g(λ) + S∥λ∥
p
g(λ⋆)− g(λ) ≥ ∥f(y(λ))− f(y⋆)∥,

where

y(λ) = argmin
y∈Ȳ

�
f(y) + λTAy

�
, (4.34)

the set Ȳ is given in (4.1), the matrix A is given in (4.3), µ = mini µi, and S =
p
(4 + 4 cos(π/m))/µ.

Proof. Let us first define compactly the partial Lagrangian L : IRm×n(m−1) → IR associ-

ated with Problem (3.2) [cf. equations (3.3) and (4.3)], i.e.,

L(y,λ) = f(y) + λTAy. (4.35)

Then,

g(λ⋆)− g(λ) = inf
y∈Ȳ

L(y,λ⋆)− inf
y∈Ȳ

L(y,λ) (4.36)

= L(y⋆,λ⋆)− L(y(λ),λ) (4.37)

= L(y⋆,λ)− L(y(λ),λ) (4.38)

≥ µ

2
∥y(λ)− y⋆∥2, (4.39)

where (4.36) follows from the definition of the dual function, (4.37) follows from As-

sumption 3, and (4.38) is immediate from that Ay⋆ = 0. Finally, the inequality (4.39)

follows from [11, page 11, equation (35)] since L is a strongly convex function of y with

constant µ for fixed λ, and the supposition that f is differentiable. This concludes the

proof of the first part.
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For the second claim, we start with equation (4.37). Then we have

∥g(λ⋆)− g(λ)∥ = f(y⋆)−f(y(λ))−λTAy(λ) (4.40)

≥ ∥f(y(λ))−f(y⋆)∥−∥λ∥∥A∥∥y(λ)− y⋆)∥ (4.41)

= ∥f(y(λ))−f(y⋆)∥

−
p

2 + 2 cos(π/m)∥λ∥∥y(λ)− y⋆)∥, (4.42)

where (4.40) follows simply from Assumption 3 and the definition of the Lagrangian.

The inequality (4.41) and the last equality (4.42) follow immediately by applying the

triangular and Cauchy–Schwarz inequalities, together with the properties of the spectral

norm of matrix A (cf. Remark 5). Finally, by applying (4.39) in (4.42) and rearranging

the terms, we obtain the intended result

g(λ⋆)− g(λ) + S∥λ∥
p

g(λ⋆)− g(λ) ≥ ∥f(y(λ))− f(y⋆)∥,

where S =
p

(4 + 4 cos(π/m))/µ.

4.2 Convergence Analysis: Global Consensus

In this section, we analyze the convergence properties of Algorithm 5 and Algorithm 6,

which are modeled based on the global consensus problem (3.1). In particular, we discuss

the convergence properties under two main cases:

1. CASE 1: The local objective functions fis in problem (3.2) are strongly convex

with constants µi > 0, i = 1, . . . ,m (i.e., Assumption 4.1.1 holds).

2. CASE 2: The set Y in problem (3.2) equals IRn. Moreover, the local objective

functions fis in problem (3.2) are differentiable, the gradients ∇fis are Lipschitz

continuous on IRn with constants Li > 0, and fis are strongly convex with constants

µi > 0, i = 1, . . . ,m (i.e., Assumption 4.1.2 and Assumption 4.1.1 hold).
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Roughly speaking, the CASE 1 is representing a scenario where the dual function g

is with Lipschitz continuous gradients (cf. Proposition 1), and the CASE 2 is representing

a scenario where the negative dual function is both strongly convex and with Lipschitz

continuous gradients (cf. Proposition 1 and Proposition 2).

For each case above, it is useful to restate the Lagrange multiplier update performed

by Algorithm 5 (see line 8 of Algorithm 5) or Algorithm 6 (line 7 of Algorithm 6), i.e.,

λ(k+1) = λ(k) + γkd̂
(k). (4.43)

Moreover, recall that the primal solution computed by Algorithm 5 or Algorithm 6 in each

iteration k ∈ Z0
+ is y(k), where

y(k) =
�
(y

(k)
1 )T . . . (y(k)

m )T�T
= argmin

y∈Ȳ
f(y) + (λ(k))TAy. (4.44)

It is worth noting that, for each case, first we derive convergence results of the se-

quences of Lagrange multipliers {λ(k)}, which represent convergences in the dual do-

main. Secondly, the convergences of the primal solutions {y(k)} and the primal objective

function values {f(y(k))} are derived. Finally, in the latter part of this chapter, we discuss

how a feasible point ỹ(k) to problem (3.2) is computed by using y(k). More importantly,

convergences of the sequences {ỹ(k)} and {f(ỹ(k))} are also mathematically substanti-

ated.

It is worth emphasizing that, we derive all the convergence results under two step size

rules. In particular, we consider

1) constant step size rule: i.e., γk = γ, ∀k,

2) nonsummable step size rule: i.e.,

∞X

k=0

γk = ∞. (4.45)
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Remark 13. The constant step size rule γk = γ, ∀k, is a particular case of the non-

summable step size rule (4.45).

Here, it is important to note that, many works in the literature which have analyzed

convergence results using the nonsummable step size rule (4.45), are considered with

some other additional conditions, such as the square summability of step sizes γk or di-

minishing condition of γk [17, 18]. These particular step size rules are usually known as

the square summable but not summable step size rule and nonsummable diminishing step

size rule, respectively (cf. section 2.2.2). However, in our study, we only consider the

nonsummable condition (4.45) for our derivations.

4.2.1 Key Remarks, and Related Results

Before establishing convergence results, we outline some useful results in this section.

First, a consequence of Assumption 2, which is an upper bound on the overall distortion

due to imperfect subproblem coordination is outlined below.

Remark 14. Assumption 2 entails an absolute deterministic distortion of d(k) [cf. (3.9)

and (3.10)]. In particular, we have,

∥d̂(k) − d(k)∥ ≤ ϵ (4.46)

for both Algorithm 5 and Algorithm 6, where

ϵ =

vuut
m−1X

i=1

(εi + εi+1)2. (4.47)

We let h = −g, that is the negative dual function, for clarity. It is worth noting that

the function h is differentiable as remarked below.

Remark 15. Assumption 1 together with Assumption 4.1.1, entail the differentiability of

h on IRn(m−1).
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Finally, we record a lemma highlighting a recursive inequality that is useful when

asserting convergences of both cases, i.e., CASE 1 and CASE 2.

Lemma 7. Suppose Assumption 1, Assumptions 2, and Assumption 4.1.1 hold. Let γi

satisfy the condition 0 < γi ≤ 1/Lh for all i ∈ Z0
+. Then, the function h evaluated

at Lagrange multipliers computed in consecutive iterations k, and k + 1 of Algorithm 5

conforms to

h(λ(k+1)) ≤ h(λ(k))− γk
2
∥∇h(λ(k))∥2 + γk

2
ϵ2, (4.48)

where Lh = (1/µ) (2 + 2 cos(π/m)), with µ = mini µi. The same holds for Algorithm 6.

Proof. Assumption 1 and Assumption 4.1.1 entail that Proposition 1 holds. Thus, by

using descent lemma [88, Section 5.1.1] (see also Lemma 2), we have

h(γ) ≤ h(δ) +∇h(δ)T(γ − δ) +
Lh

2
∥γ − δ∥2, ∀ γ, δ ∈ IRn(m−1). (4.49)

Now let γ = λ(k+1) and δ = λ(k). Thus we have γ − δ = γkd̂
(k) [cf. (4.43)]. Moreover,

note that r(k) = d̂(k) − d(k) and d(k) = −∇h(λ(k)) (cf. Remark 15). Then, starting from

(4.49) we have

h(λ(k+1)) ≤ h(λ(k)) + γk∇h(λ(k))Td̂(k) +
γ2
kLh

2
∥d̂(k)∥2 (4.50)

= h(λ(k)) + γk∇h(λ(k))T(r(k) −∇h(λ(k)))

+
γ2
kLh

2
(r(k) −∇h(λ(k)))T(r(k) −∇h(λ(k))) (4.51)

= h(λ(k))− γk∥∇h(λ(k))∥2 + γk∇h(λ(k))Tr(k)

+
γ2
kLh

2

�
∥∇h(λ(k))∥2 − 2∇h(λ(k))Tr(k) + ∥r(k)∥2

�
(4.52)

≤ h(λ(k))− γk
2
∥∇h(λ(k))∥2 + γk

2
∥r(k)∥2 (4.53)

≤ h(λ(k))− γk
2
∥∇h(λ(k))∥2 + γk

2
ϵ2, (4.54)

where (4.50), (4.51) and (4.52) are straightforward by simple calculations and that d̂(k) =

r(k) −∇h(λ(k)). The inequality (4.53) follows from that 0 < γk ≤ 1/Lh for all k ∈ Z0
+,
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and (4.54) follows from Remark 14.

4.2.2 Convergence Analysis: CASE 1

This section presents the convergence properties of both Algorithm 5 and Algorithm 6

under CASE 1, along with their rates of convergences. First, a result that is useful when

asserting convergences using both constant and nonsummable step size rules is presented

below.

Lemma 8. Suppose Assumption 1, Assumptions 2, and Assumption 4.1.1 hold. Let {λ(k)}

be the sequence of Lagrange multipliers generated by either Algorithm 5 or Algorithm 6

with the step size γi satisfying the condition 0 < γi ≤ 1/Lh for all i ∈ Z0
+. Then

min
i∈{0,...,k}

∥∇h(λ(i))∥ ≤

vuut2
�
h(λ(0))− h(λ⋆)

�

Pk
i=0 γi

+ ϵ, (4.55)

where Lh = (1/µ) (2 + 2 cos(π/m)), with µ = mini µi.

Proof. By using the recursive application of (4.48) [cf. Lemma 7], we get

h(λ(k+1)) ≤ h(λ(0))− 1

2

kX

i=0

γi∥∇h(λ(i))∥2 + ϵ2

2

kX

i=0

γi. (4.56)

Rearranging terms of (4.56), yields

kX

i=0

γi∥∇h(λ(i))∥2 ≤ 2(h(λ(0))− h(λ(k+1))) + ϵ2
kX

i=0

γi

≤ 2
�
h(λ(0))− h(λ⋆)

�
+ ϵ2

kX

i=0

γi, (4.57)

where (4.57) is immediate from that h(λ(k)) ≥ h(λ⋆), for all k ∈ Z0
+. Here λ⋆ is a

dual solution [cf. Assumption 3]. Because minj ∥∇h(λ(j))∥2 ≤ ∥∇h(λ(i))∥2 for all
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i ∈ {0, . . . , k}, (4.57) implies

min
k∈{1,...,k}

∥∇h(λ(j))∥2 ≤
2
�
h(λ(0))− h(λ⋆)

�

Pk
i=0 γi

+ ϵ2. (4.58)

Since
p

minj ∥ · ∥2 = minj

p
∥ · ∥2, (4.58) ensures that

minj ∥∇h(λ(j))∥ ≤

vuut2
�
h(λ(0))− h(λ⋆)

�

Pk
i=0 γi

+ ϵ2

≤

vuut2
�
h(λ(0))− h(λ⋆)

�

Pk
i=0 γi

+ ϵ, (4.59)

where (4.59) immediately follows from that
√
x+ y ≤ √

x+
√
y for all x, y ≥ 0.

4.2.2.1 Constant Step Size Rule

In this section, we derive convergence results in the dual domain and those related to the

primal domain (primal optimality violations) using the constant step size rule under CASE

1, along with their rates of convergences.

First, the convergence results in the dual domain are presented below.

Corollary 1. Suppose Assumption 1, Assumptions 2, and Assumption 4.1.1 hold. Let

{λ(k)} be the sequence of Lagrange multipliers generated by either Algorithm 5 or Algo-

rithm 6. Moreover, suppose γk = γ, ∀k ∈ Z0
+ with 0 < γ ≤ 1/Lh. Then

1. lim
k

min
i∈{0,...,k}

∥∇h(λ(i))∥ ≤ ϵ.

2. min
i∈{0,...,k}

∥∇h(λ(i))∥ = O
�

1√
k

�
+ ϵ.

Proof. Let γi = γ, ∀ i ∈ Z0
+ in Lemma 8, where 0 < γ ≤ 1/Lh. Then, first part of Corol-

lary 1 follows immediately from Lemma 8, because, limk→∞
Pk

i=0 γi = limk→∞(k +

1)γ = ∞.
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To claim the second part, we start with (4.55) in Lemma 8 with γi = γ, ∀ i ∈ Z0
+.

min
i∈{0,...,k}

∥∇h(λ(i))∥ ≤

vuut2
�
h(λ(0))− h(λ⋆)

�

Pk
i=0 γ

+ ϵ

=

vuut2
�
h(λ(0))− h(λ⋆)

�

(k + 1)γ
+ ϵ (4.60)

≤

vuut2
�
h(λ(0))− h(λ⋆)

�

γ

1√
k
+ ϵ (4.61)

where (4.60) is immediate by simple calculation, (4.61) follows because k < k+1, ∀ k ∈

Z0
+. Finally, the result mini∈{0,...,k} ∥∇h(λ(i))∥ = O

�
1/
√
k
�
+ ϵ follows using asymp-

totic notation “O” (cf. Definition 20).

Corollary 1 indicates that, the minimal norm gradients mini ∥∇h(λ(i))∥ can converge

to a neighborhood around 0 at a rate of order O(1/
√
k), where the size of the neighbor-

hood depends on the level of the distortion ϵ [cf. (4.46)]. It is straightforward to see that

the fastest rate corresponding to the fixed step size rule is attained with the largest step

size in the range 0 < γ ≤ 1/Lh, i.e., with γ = 1/Lh [cf. (4.61)].

Next, the convergences of the primal variables and the primal objective values are

established in the following proposition.

Proposition 4.2.1. Suppose Assumption 1, Assumptions 2, Assumption 3, and Assump-

tion 4.1.1 hold. Let {λ(k)} be the sequence of Lagrange multipliers generated by either

Algorithm 5 or Algorithm 6, and {y(k)} be the corresponding sequence of primal vari-

ables. Moreover, suppose that the functions fi, i = 1, . . . ,m are differentiable. Let

γk = γ, ∀k ∈ Z0
+ with 0 < γ ≤ 1/Lh. If the distance from λ(k) to the dual optimal

solution λ⋆, i.e., ∥λ(k) − λ⋆∥ is uniformly bounded by some scalar D, then

1. lim
k

min
i∈{0,...,k}

∥y(i) − y⋆∥ ≤
p

2Dϵ/µ.

2. lim
k

min
i∈{0,...,k}

�
f(y(i)) − f(y⋆)

�
≤ Dϵ +

√
DS(D + ∥λ⋆∥)√ϵ, where the positive

scalar S =
p

(4 + 4 cos(π/m))/µ.
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3. min
i∈{0,...,k}

∥y(i) − y⋆∥ = O

�
1
4
√
k

�
+
p

2Dϵ/µ.

4. min
i∈{0,...,k}

∥f(y(i))− f(y⋆)∥ = O

�
1
4
√
k

�
+Dϵ+

√
DS(D + ∥λ⋆∥)√ϵ

Proof. Part 1: Recall that the undistorted local version of the public variable z is yi ∈

IRn, i = 1, . . . ,m. Moreover, subsystems solve in parallel the problem

minimize
y∈Ȳ

f(y) + (λ(k))TAy (4.62)

to yield the solution y(k) = [y
(k)
1 , . . . ,y

(k)
m ]T (cf. line 4 of Algorithm 5 and lines 3 of

Algorithm 6, respectively). Then

∥y(k) − y⋆∥2 ≤ (2/µ)
�
h(λ(k))− h(λ⋆)

�
(4.63)

≤ (2/µ) ∇h(λ(k))T(λ(k) − λ⋆) (4.64)

≤ (2/µ) ∥∇h(λ(k))∥∥λ(k) − λ⋆∥ (4.65)

≤ (2D/µ) ∥∇h(λ(k))∥, (4.66)

where (4.63) follows from the part 1 of Lemma 6, (4.64) follows immediately due to the

convexity and differentiability of h (cf. Theorem 1), (4.65) follows from Cauchy–Schwarz

inequality, and finally (4.66) follows directly using the uniform boundedness of ∥λ(k) −

λ⋆∥ by D. Then from (4.66) it is straightforward that

min
i∈{0,...,k}

∥y(k) − y⋆∥2 ≤ (2D/µ) min
i∈{0,...,k}

∥∇h(λ(i))∥. (4.67)

Next, because
p
minj ∥ · ∥2 = minj

p
∥ · ∥2, (4.67) yields

min
i∈{0,...,k}

∥y(k) − y⋆∥ ≤
p

(2D/µ)

r
min

i∈{0,...,k}
∥∇h(λ(i))∥. (4.68)

Finally, equation (4.68) together with part 1 of Corollary 1 yields the first claim of Propo-
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sition 4.2.1, i.e.,

lim
k

min
i∈{0,...,k}

∥y(i) − y⋆∥ ≤
p

2Dϵ/µ. (4.69)

Part 2: By using the part 2 of Lemma 6, we have

f(y(k))− f(y⋆) ≤
�
h(λ(k))− h(λ⋆)

�
+ S∥λ(k)∥

q
h(λ(k))− h(λ⋆)

≤ D∥∇h(λ(k))∥+
√
DS∥λ(k)∥

q
∥∇h(λ(k))∥ (4.70)

≤ D∥∇h(λ(k))∥+
√
DS(D + ∥λ⋆∥)

q
∥∇h(λ(k))∥, (4.71)

where (4.70) follows directly using (4.66), and (4.71) follows from the supposition ∥λ(k)−

λ⋆∥ ≤ D, ∀ k ∈ Z0
+ together with that ∥λ(k)∥ − ∥λ⋆∥ ≤ ∥λ(k) − λ⋆∥. Thus, the second

part of the proposition follows from part 1 of Corollary 1 and (4.71).

Part 3: To prove the third claim, we start with equation (4.68). Then, the inequality (4.68)

together with part 2 of Corollary 1 yields

min
i∈{0,...,k}

∥y(i) − y⋆∥ ≤
p
(2D/µ)

s
O

�
1√
k

�
+ ϵ

≤
p

(2D/µ)

�
O

�
1
4
√
k

�
+
√
ϵ

�
(4.72)

where (4.72) follows from that
√
x+ y ≤ √

x +
√
y for all x, y ≥ 0. Thus we have

mini∈{0,...,k} ∥y(k)−y⋆∥ = O
�
1/ 4

√
k
�
+
p

2Dϵ/µ, the intended result (cf. Definition 20).
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Part 4: The inequality (4.71) yields that

min
i∈{0,...,k}

∥f(y(i))− f(y⋆)∥ ≤ D min
i∈{0,...,k}

∥∇h(λ(i))∥

+
√
DS(D + ∥λ⋆∥)

r
min

i∈{0,...,k}
∥∇h(λ(i))∥

≤ D

�
O

�
1√
k

�
+ ϵ

�

+
√
DS(D + ∥λ⋆∥)

s�
O

�
1√
k

�
+ ϵ

�
(4.73)

≤ D

�
O

�
1√
k

�
+ ϵ

�

+
√
DS(D + ∥λ⋆∥)

�
O

�
1
4
√
k

�
+
√
ϵ

�
, (4.74)

where (4.73) follows using part 2 of Corollary 1 and (4.74) follows again from that
√
x+ y ≤ √

x+
√
y for all x, y ≥ 0. Thus, the fourth part of the proposition immediately

follows from (4.74) together with the asymptotic notation “O” (cf. Definition 20).

4.2.2.2 Nonsummable Step size Rule

Convergence properties in both dual and primal domains using the nonsummable step size

rule under CASE 1 are presented in this section.

First, the following result establishes the convergences in the dual domain.

Corollary 2. Suppose Assumption 1, Assumptions 2, and Assumption 4.1.1 hold. Let

{λ(k)} be the sequence of Lagrange multipliers generated by either Algorithm 5 or Algo-

rithm 6. Moreover, suppose γk satisfies the nonsummable step size rule given in (4.45)

with 0 < γk ≤ 1/Lh. Then

1. lim
k

min
i∈{0,...,k}

∥∇h(λ(i))∥ ≤ ϵ.
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2. for γk = γ/(k + 1)p, where 0 < γ ≤ 1/Lh and 0 ≤ p ≤ 1,

min
i∈{0,...,k}

∥∇h(λ(i))∥ =





O

�
1√
k1−p

�
+ ϵ p ∈ [0, 1)

O

�
1√
ln k

�
+ ϵ p = 1.

(4.75)

Proof. The first part of the Corollary 2 follows immediately from Lemma 8 and from that

limk→∞
Pk

i=0 γi = ∞ [cf. (4.45)].

Next, to claim the second part, we start with the summation
Pk

i=0 (1/(i+ 1)p). Then,

clearly we have

kX

i=0

1

(i+ 1)p
≥

Z k+1

0

1

(x+ 1)p
dx (4.76)

=





(k + 2)1−p − 1

1− p
; p ∈ [0, 1)

ln (k + 2) ; p = 1.

(4.77)

Next, using equation (4.77) together with Lemma 8 [cf. equation (4.55)] yield

min
i∈{0,...,k}

∥∇h(λ(i))∥ ≤





vuut2
�
h(λ(0))− h(λ⋆)

�
(1− p)

γ ((k + 2)1−p − 1)
+ ϵ ; p ∈ [0, 1)

vuut2
�
h(λ(0))− h(λ⋆)

�

γ ln (k + 2)
+ ϵ ; p = 1

≤





K1p
(k1−p − 1)

+ ϵ ; p ∈ [0, 1)

K2√
ln k

+ ϵ ; p = 1,

(4.78)

where K1 = 2
�
h(λ(0))− h(λ⋆)

�
(1− p)/γ and K2 = 2

�
h(λ(0))− h(λ⋆)

�
/γ. The last

inequality (4.78) follows because, k < k + 2 ∀ k ∈ Z0
+. Finally, the result holds with the

asymptotic representation of the right-hand side of the inequality (4.78).

Corollary 2 indicates that, the minimal norm gradients mini ∥∇(h(λ(i))∥ can converge
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to a neighborhood around 0 at a rate of order O(1/
√
k1−p) and O(1/

√
ln k), when p ∈

[0, 1) and p = 1 respectively, where the size of the neighborhood depends on ϵ [cf. (4.46)].

It is worth noting that, the Corollary 2 directly reduces to Corollary 1 when p = 0.

Moreover, it is straightforward to see that the fastest rate is achieved when p = 0, which

corresponds to the fixed step size rule with γk = 1/Lh for all k ∈ Z0
+, and it is of the

order O(1/
√
k).

Convergences of the primal variables and the primal objective values are established

in the following proposition.

Proposition 4.2.2. Suppose Assumption 1, Assumptions 2, Assumption 3, and Assump-

tion 4.1.1 hold. Let {λ(k)} be the sequence of Lagrange multipliers generated by either

Algorithm 5 or Algorithm 6 and {y(k)} be the corresponding sequence of primal vari-

ables. Moreover, suppose that the functions fi, i = 1, . . . ,m are differentiable. Let γk

satisfies the nonsummable step size rule given in (4.45) with 0 < γk ≤ 1/Lh. If the dis-

tance from λ(k) to the dual optimal solution λ⋆, i.e., ∥λ(k) −λ⋆∥ is uniformly bounded by

some scalar D, then

1. lim
k

min
i∈{0,...,k}

∥y(i) − y⋆∥ ≤
p

2Dϵ/µ.

2. lim
k

min
i∈{0,...,k}

�
f(y(i)) − f(y⋆)

�
≤ Dϵ +

√
DS(D + ∥λ⋆∥)√ϵ, where the positive

scalar S =
p

(4 + 4 cos(π/m))/µ.

3. for γk = γ/(k + 1)p, where 0 < γ ≤ 1/Lh and 0 ≤ p ≤ 1,

min
i∈{0,...,k}

∥y(i) − y⋆∥ =





O

�
1

4
√
k1−p

�
+
p

2Dϵ/µ ; p ∈ [0, 1)

O

�
1

4
√
ln k

�
+
p

2Dϵ/µ ; p = 1.

(4.79)
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4. for γk = γ/(k + 1)p, where 0 < γ ≤ 1/Lh and 0 ≤ p ≤ 1,

min
i∈{0,...,k}

∥f(y(i))−f(y⋆)∥ =





O

�
1

4
√
k1−p

�
+Dϵ+

√
DS(D + ∥λ⋆∥)√ϵ ;

p ∈ [0, 1)

O

�
1

4
√
ln k

�
+Dϵ+

√
DS(D + ∥λ⋆∥)√ϵ ;

p = 1.

(4.80)

Proof. The proof of Proposition 4.2.2 is similar to that presented in the proof of Proposi-

tion 4.2.1. Thus the proof is omitted.

It is worth pointing out that, Proposition 4.2.1 and Proposition 4.2.2 for primal domain

convergences rely on few additional hypotheses, unlike Corollary 1 and Corollary 2 in

which the convergences are established in the dual-domain.

4.2.3 Convergence Analysis: CASE 2

In this section, we present the convergence properties of both Algorithm 5 and Algo-

rithm 6 under CASE 2, along with their rates of convergences.

A useful result that is employed when deriving convergence results using both con-

stant and nonsummable step size rules is presented below.

Lemma 9. Suppose Assumption 1, Assumptions 2, Assumption 4.1.1, and Assumption 4.1.2

hold. Let {λ(k)} be the sequence of Lagrange multipliers generated by either Algorithm 5

or Algorithm 6 with the step size γi satisfying the condition 0 < γi ≤ 1/Lh for all i ∈ Z0
+.

Then

h(λ(k+1))− h(λ⋆) ≤ (1− γkµh)
�
h(λ(k))− h(λ⋆)

�
+

γk
2
ϵ2, (4.81)

where Lh = (1/µ) (2 + 2 cos(π/m)), µ = mini µi, and µh = (1/L) (2− 2 cos(π/m)),

with L = maxi Li.
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Proof. Since Assumption 4.1.2 holds, h(λ) is strongly convex with constant µh (cf. Propo-

sition 2). Hence we have that ∥∇h(λ(k))∥2 ≥ 2µh

�
h(λ(k))− h(λ⋆)

�
[11, page 24]. This

together with Lemma 7 yields

h(λ(k+1))− h(λ⋆) ≤ (1− γkµh)
�
h(λ(k))− h(λ⋆)

�
+

γk
2
ϵ2,

the intended result.

It is worth noting that 0 ≤ 1 − γkµh < 1 in Lemma 9, because 0 < γk ≤ 1/Lh and

µh ≤ Lh.

4.2.3.1 Constant Step Size Rule

The convergence results for the constant step size rule are presented in this section. The

following result is immediate from Lemma 9.

Corollary 3. Suppose Assumption 1, Assumptions 2, Assumption 4.1.1 and Assump-

tion 4.1.2 hold. Let {λ(k)} be the sequence of Lagrange multipliers generated by ei-

ther Algorithm 5 or Algorithm 6 with the step size γk = γ for all k ∈ Z0
+. Then for

0 < γ ≤ 1/Lh

h(λ(k))− h(λ⋆) ≤ (1− γµh)
k
�
h(λ(0))− h(λ⋆)

�
+

ϵ2

2µh

. (4.82)

Moreover,

lim sup
k

�
h(λ(k))− h(λ⋆)

�
≤ ϵ2

2µh

. (4.83)
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Proof. Using the recursive application of (4.81) with γk = γ yields

h(λ(k))− h(λ⋆) ≤ (1− γµh)
k
�
h(λ(0))− h(λ⋆)

�
+

γϵ2

2

k−1X

i=0

(1− γµh)
k

≤ (1− γµh)
k
�
h(λ(0))− h(λ⋆)

�
+

γϵ2

2

∞X

i=0

(1− γµh)
k (4.84)

= (1− γµh)
k
�
h(λ(0))− h(λ⋆)

�
+

ϵ2

2µh

, (4.85)

where (4.84) follows using that the infinite sum
P∞

i=0(1 − γµh)
k is larger than the fi-

nite sum
Pk−1

i=0 (1 − γµh)
k, and (4.85) is straightforward using that the geometric sum

P∞
i=0(1− γµh)

k = 1/γµh.

The second part of the corollary follows trivially because lim supk(1 − γµh)
k = 0

(remind that 0 ≤ 1− γµh < 1 and h(λ(0))− h(λ⋆) < ∞).

According to Corollary 3, with constant step size, the least upper bound of h(λ(k))

converges into a neighborhood of the optimal value h(λ⋆) with the rate of geometric

progression. In this case, the size of the neighborhood depends on both ϵ [cf. (4.46)] and

the constant µh that characterizes the strong convexity of h (cf. Proposition 2).

The convergences of the primal variables and the primal objective function values are

asserted in the following proposition.

Proposition 4.2.3. Suppose Assumption 1, Assumptions 2, Assumption 3, Assumption 4.1.1,

and Assumption 4.1.2 hold. Let {λ(k)} be the sequence of Lagrange multipliers generated

by either Algorithm 5 or Algorithm 6 and {y(k)} be the corresponding sequence of primal

variables. Moreover, suppose that the functions fi, i = 1, . . . ,m are differentiable. Let

the step size γk = γ for all k ∈ Z0
+. Then for 0 < γ ≤ 1/Lh

1. lim sup
k

∥y(k) − y⋆∥ ≤ ϵ
p
1/(µµh).

2. lim sup
k

∥f(y(k)) − f(y⋆)∥ ≤
�
1 + S

p
2/µh

� ϵ2

2µh

+
S∥λ⋆∥ϵ√

2µh

, where the positive

scalar S =
p

(4 + 4 cos(π/m))/µ.
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3. the least upper bound of ∥y(k) − y⋆∥ converges into a neighbourhood of 0 with the

rate of geometric progression.

4. the least upper bound of ∥f(y(k)) − f(y⋆)∥ converges into a neighbourhood of 0

with the rate of geometric progression.

Proof. The steps of the proof are similar to that of Proposition 4.2.1. Let y(k) be the

solution to the problem (4.62). Then, the norm-squared error in the primal solution is

∥y(k) − y⋆∥2 ≤ (2/µ)
�
h(λ(k))− h(λ⋆)

�
(4.86)

≤ (2/µ) (1− γkµh)
k
�
h(λ(0))− h(λ⋆)

�
+ ϵ2/(µµh), (4.87)

where (4.86) follows from part 1 of Lemma 6 and (4.87) follows from Corollary 3. Thus

the claims 1 and 3 of the proposition are immediate from (4.87).

Next, to prove the second and fourth claims, we start with part 2 of Lemma 6.

f(y(k))− f(y⋆) ≤
�
h(λ(k))− h(λ⋆)

�
+ S∥λ(k)∥

q
h(λ(k))− h(λ⋆)

≤
�
h(λ(k))− h(λ⋆)

�
+ S

�
∥λ⋆∥+

q
(2/µh)

�
h(λ(k))− h(λ⋆)

��
×

q
h(λ(k))− h(λ⋆) (4.88)

=
�
1 + S

p
2/µh

��
h(λ(k))− h(λ⋆)

�
+ S∥λ⋆∥

q
h(λ(k))− h(λ⋆),

(4.89)

where S =
p

(4 + 4 cos(π/m))/µ. The inequality (4.88) follows from the strong con-

vexity of h (cf. Proposition 2), and (4.89) follows using simple calculations. In particular,

from [11, page 11, Equation (35)] we have

∥λ(k) − λ⋆∥2 ≤ 2

µh

�
h(λ(k))− h(λ⋆)

�
,

which in turn ensures that ∥λ(k)∥ ≤ ∥λ⋆∥+
q
(2/µh)

�
h(λ(k))− h(λ⋆)

�
since ∥λ(k)∥ −
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∥λ⋆∥ ≤ ∥λ(k) − λ⋆∥. Thus, (4.89) together with (4.82) yields

f(y(k))− f(y⋆) ≤
�
1 + S

p
2/µh

��
(1− γµh)

k
�
h(λ(0))− h(λ⋆)

�
+

ϵ2

2µh

�

+ S∥λ⋆∥
s

(1− γµh)k(h(λ
(0))− h(λ⋆) +

ϵ2

2µh

(4.90)

Finally, claims 2 and 4 of the proposition are straightforward using (4.90).

Unlike Propositions 4.2.1 and4.2.2, in which the distance to the dual optimal solution

∥λ(k) − λ⋆∥ is assumed to be uniformly bounded by some scalar D, in Proposition 4.2.3,

no such assumptions are made. This is a consequence of the strong convexity of g.

4.2.3.2 Nonsummable Step Size Rule

This section presents convergence results using the nonsummable step size rule under

CASE 2. First, we present the following lemma, which plays a key role in asserting

related convergence results.

Lemma 10 ( [11], Section 2.2, Lemma 3). Let u(k) be a sequence such that

u(k+1) ≤ p(k)u(k) + α(k), (4.91)

where 0 ≤ p(k) < 1 and α(k) ≥ 0 with

∞X

k=0

(1− p(k)) = ∞, and lim
k→∞

α(k)

(1− p(k))
= 0. (4.92)

Then, lim supk u
(k) ≤ 0. If u(k) ≥ 0, then u(k) → 0.

Corollary 4. Suppose Assumption 1, Assumptions 2, Assumption 4.1.1, and Assump-

tion 4.1.2 hold. Let {λ(k)} be the sequence of Lagrange multipliers generated by either

Algorithm 5 or Algorithm 6. Moreover, suppose γk satisfies the nonsummable step size

rule given in (4.45) with 0 < γk ≤ 1/Lh. Then
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1. lim sup
k

h(λ(k))− h(λ⋆) ≤ ϵ2

2µh

.

2. for γk = (c/µh)/(k + 1)p, where 0 < p ≤ 1 and 0 < c ≤ µh/Lh,

h(λ(k))− h(λ⋆) = O

�
1

kc/p

�
+

ϵ2

2µh

. (4.93)

Proof. By subtracting the term (1 − γkµh)ϵ
2/2µh on both sides of the inequality (4.81)

(cf. Lemma 9) yields

h(λ(k+1))− h(λ⋆)− (1− γkµh)
ϵ2

2µh

≤ (1− γkµh)
�
h(λ(k))− h(λ⋆)

�

+
γk
2
ϵ2 − (1− γkµh)

ϵ2

2µh

. (4.94)

By rearranging the terms, (4.94) yields

h(λ(k+1))− h(λ⋆)− ϵ2

2µh

≤ (1− γkµh)

�
h(λ(k))− h(λ⋆)− ϵ2

2µh

�
. (4.95)

Here, (4.95) is in the same form of (4.91) (cf. Lemma 10) with p(k) = 1 − γkµh,

u(k) = h(λ(k)) − h(λ⋆) − ϵ2/2µh, and α(k) = 0. Then,
P∞

i=0(1 − p(k)) = ∞, because

γk satisfies the nonsummable step size rule given in (4.45). Moreover, it is easily seen

that α(k)/(1 − p(k)) → 0 as k → ∞. Hence, Lemma 10 ensures that lim supk h(λ
(k)) −

h(λ⋆) − (ϵ2/2µh) ≤ 0. Thus we have lim supk→∞ h(λ(k)) − h(λ⋆) ≤ ϵ2/2µh which

completes the proof of part 1.

Next, to prove the second part of the Corollary 4, we let u(k) = h(λ(k)) − h(λ⋆) −

ϵ2/2µh and v(k) = (k + 1)c/pu(k). Then,

v(k+1) = (k + 2)c/pu(k+1) (4.96)

≤ (k + 1)c/p
�
1 +

1

k + 1

�c/p

(1− γkµh)u
(k) (4.97)

=

�
1 +

1

k + 1

�c/p �
1− c

(k + 1)p

�
v(k) (4.98)
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≤
�
1 +

c

p(k + 1)
+

c2

2p2(k + 1)2
+ o

�
1

(k + 1)2

���
1− c

(k + 1)p

�
v(k)

(4.99)

≤
�
1 +

c

(k + 1)p
+

c2

2p2(k + 1)2
+ o

�
1

(k + 1)2

���
1− c

(k + 1)p

�
v(k),

for all k ≥ ⌈e
ln p

(p−1) − 1⌉

(4.100)

=

�
1− c2

(k + 1)2p
+

c2

2p2(k + 1)2
+ o

�
1

(k + 1)2

��
v(k), for all k ≥ ⌈e

ln p
(p−1) − 1⌉

(4.101)

≤
�
1− c2

(k + 1)2p
+

c2

2(k + 1)2p
+ o

�
1

(k + 1)2

��
v(k), for all k ≥ ⌈e

ln p
(p−1) − 1⌉

(4.102)

=

�
1− c2

2(k + 1)2p
+ o

�
1

(k + 1)2

��
v(k), for all k ≥ ⌈e

ln p
(p−1) − 1⌉ (4.103)

≤ v(k), for sufficiently large k, (4.104)

where (4.96) follows using the definition of v(k), (4.97) follows by simple calculations

and using (4.95), (4.98) follows by replacing γk and u(k) with their definitions, and (4.99)

follows simply by using the binomial expansion. When deriving (4.100), we use that

(x + 1)p ≤ p(x + 1) for sufficiently large x, when p ∈ (0, 1]. The equality (4.101)

is immediate from simple calculations. The inequality (4.102) follows again from that

(x + 1)2p ≤ p2(x + 1)2 for all sufficiently large x, when p ∈ (0, 1]. The equality (4.103)

and the last inequality (4.104) are immediate from simple calculations. Then, summing

over k, we get the boundedness of v(k), i.e.,

v(k) ≤ v(0). (4.105)

Thus, with the definition of v(k), (4.105) yields

(k + 1)c/pu(k) ≤ h(λ(0))− h(λ⋆)− ϵ2/2µh. (4.106)
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Finally, the inequality (4.106), together with the definition of u(k) yields the result h(λ(k))−

h(λ⋆) = O(1/kc/p) + ϵ2/2µh.

Corollary 4 indicates that the least upper bound of h(λ(k)) converges into a neighbor-

hood of the optimal value h(λ⋆) at a rate of O(1/kc/p), where the size of the neighborhood

explicitly depends on ϵ and the strong convexity constant µh of h. Note that the rate of

convergence depends on the ratio c/p. It can easily be observed that, for a given c value,

the rate of convergence increases when the value of p decreases, where 0 < c ≤ µh/Lh

and 0 < p ≤ 1.

Note that the case p = 0 in the nonsummable step size rule γk = (c/µh)/(k + 1)p

corresponds to a constant step size rule. This suggests, as in the constant step size rule

(cf. Corollary 3), that when p → 0, (4.93) should be a good resemblance of (4.82). Ac-

cording to the proof of Corollary 4, p is to be chosen in such a manner that (k + 1)p ≤

p(k+1) for sufficiently large k. One such choice is p = log k/k (see Figure 4.1). With this

choice, we have that 0 < p < 1 and p → 0 as k → ∞. Thus, clearly, for sufficiently large

k, the nonsummable step size rule γk = (c/µh)/(k + 1)p with p = log k/k corresponds

to a constant step size rule γk = c/µh. In particular, The following Lemma will show that

h(λ(k)) converges into a neighborhood of the optimal value h(λ⋆) at a rate of geometric

progression with the above choice of p (See Figure 4.16 for numerical illustrations).

Lemma 11. Let s(k; p) = O(1/k(c/p)) (cf. Definition 20), where c > 0 and 0 < p < 1.

Then s(k; p) with p = log k/k converges to 0 with the rate of geometric progression.

Proof. Since s(k; p) = O(1/k(c/p)) (cf. Definition 20), there exists α > 0 and k0 ∈ Z+
0

such that

s(k; p) ≤ α

�
1

kc/p

�
for all k ≥ k0

= αk(−kc/ log k) for all k ≥ k0, (4.107)

where (4.107) follows using p = log k/k.
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Figure 4.1: Graphs of (k + p)p and p(k + 1) with p = log k/k. Figure clearly shows
p(k + 1) > (k + p)p for large k.

Next, using logarithms in the inequality (4.107) yields

log(s(k; p)) ≤ logα− kc for all k ≥ k0. (4.108)

Then by simple calculations (4.108) yields

s(k; p) ≤ R

�
1

ec

�k

for all k ≥ k0, (4.109)

where R = exp(logα) is a constant. Thus, clearly s(k; p) with p = log k/k converges to

0 with the rate of geometric progression as 0 < 1/ec < 1.

Lemma 11 indicates that h(λ(k)) converges into a neighborhood of the optimal value

h(λ⋆) at a rate of geometric progression with p = log k/k in γk = (c/µh)/(k + 1)p

(cf. Equation (4.93) in Corollary 4).

By using Corollary 4, convergence assertions similar to Proposition 4.2.3 for the se-

quences {y(k)} and {f(y(k))} can be derived analogously, which corresponds to γk being

nonsummable. The related result is given below.

Proposition 4.2.4. Suppose Assumption 1, Assumptions 2, Assumption 3, Assumption 4.1.1,
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and Assumption 4.1.2 hold. Let {λ(k)} be the sequence of Lagrange multipliers generated

by either Algorithm 5 or Algorithm 6 and {y(k)} be the corresponding sequence of primal

variables. Moreover, suppose that the functions fi, i = 1, . . . ,m are differentiable. Let

γk satisfies the nonsummable step size rule given in (4.45) with 0 < γk ≤ 1/Lh. Then,

1. lim sup
k

∥y(k) − y⋆∥ ≤ ϵ√
µµh

.

2. lim sup
k

∥f(y(k)) − f(y⋆)∥ ≤
�
1 + S

r
2

µh

�
ϵ2

2µh

+
S∥λ⋆∥ϵ√

2µh

, where the positive

scalar S =
p

(4 + 4 cos(π/m))/µ.

3. for γk = (c/µh)/(k + 1)p, where 0 < p ≤ 1 and 0 < c ≤ µh/Lh,

∥y(k) − y⋆∥ = O

�
1

kc/2p

�
+

ϵ

µh

. (4.110)

4. for γk = (c/µh)/(k + 1)p, where 0 < p ≤ 1 and 0 < c ≤ µh/Lh,

f(y(k))− f(y⋆) = O

�
1

kc/2p

�
+

Sϵ2

µh

√
2µh

+
S∥λ⋆∥ϵ√

2µh

+
ϵ2

2µh

. (4.111)

Proof. Part 1: Using part 1 of Lemma 6 we have,

∥y(k) − y⋆∥2 ≤ (2/µ)
�
h(λ(k))− h(λ⋆)

�
. (4.112)

Thus the part 1 of the proposition is immediate using (4.112) together with part 1 of

corollary 4.

Part 2: The proof of part 2 of the proposition is similar to the proof of part 2 of Proposi-

tion 4.2.3. Thus we start with (4.89) of the proof of part 2 of Proposition 4.2.3, which is

a consequence of part 2 of Lemma 6 and the strong convexity property of h.

f(y(k))− f(y⋆) ≤
�
1 + S

r
2

µh

��
h(λ(k))− h(λ⋆)

�
+ S∥λ⋆∥

q
h(λ(k))− h(λ⋆)

(4.113)
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Then, inequality (4.113) together with part 1 of Corollary 4 yields the result

lim sup
k

∥f(y(k))− f(y⋆)∥ ≤
�
1 + S

p
2/µh

� ϵ2

2µh

+
S∥λ⋆∥ϵ√

2µh

. (4.114)

Part 3: The inequality (4.86), which follows from part 1 of Lemma 6 together with part

2 of Corollary 4 yields

∥y(k) − y⋆∥ ≤
r

2

µ

s
O

�
1

kc/p

�
+

ϵ2

2µh

≤
r

2

µ

�
O

�
1

kc/2p

�
+

ϵ√
2µh

�
, (4.115)

where (4.115) follows using
√
x+ y ≤ √

x +
√
y for all x, y ≥ 0 together with the

asymptotic notation “O” (cf. Definition 20). Thus we have the result ∥y(k) − y⋆∥ =

O
�
1/kc/2p

�
+ ϵ/µh (cf. Definition 20).

Part 4: The inequality (4.113) together with part 2 of Corollary 4 yields

f(y(k))− f(y⋆) ≤
�
1 + S

r
2

µh

��
O

�
1

kc/p

�
+

ϵ2

2µh

�
+ S∥λ⋆∥

s
O

�
1

kc/p

�
+

ϵ2

2µh

≤
�
1 + S

r
2

µh

��
O

�
1

kc/p

�
+

ϵ2

2µh

�
+ S∥λ⋆∥

�
O

�
1

kc/2p

�
+

ϵ√
2µh

�

(4.116)

= S∥λ⋆∥O
�

1

kc/2p

�
+

�
1 + S

r
2

µh

�
O

�
1

kc/p

�
+

Sϵ2

µh

√
2µh

+
S∥λ⋆∥ϵ√

2µh

+
ϵ2

2µh

, (4.117)

where (4.116) follows from that
√
x+ y ≤ √

x +
√
y for all x, y ≥ 0 together with the

asymptotic notation “O” (cf. Definition 20), and (4.117) follows using simple calculations.

Thus, (4.117) yields the intended result

f(y(k))− f(y⋆) = O

�
1

kc/2p

�
+

Sϵ2

µh

√
2µh

+
S∥λ⋆∥ϵ√

2µh

+
ϵ2

2µh

,
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where S =
p

(4 + 4 cos(π/m))/µ.

4.2.4 Feasible Points from Algorithm 5 and Algorithm 6

4.2.4.1 Computation of a Feasible Point and Related Results

We have derived convergences in both dual and primal domains under both cases CASE

1 and CASE 2 in the preceding section. More importantly, the Proposition 4.2.1, Propo-

sition 4.2.2, Proposition 4.2.3, and Proposition 4.2.4 present convergences of sequences

{y(k)} and {f(yk)}, the sequences of primal variable iterates and primal function value it-

erates, respectively. In particular, they characterize how far the locally computed solution

y(k) (cf. line 4 of Algorithm 5 and lines 3 of Algorithm 6, respectively) is located from

the primal solution y⋆. More specifically, y(k) is not necessarily feasible to problem (3.2),

despite k being very large. That is, Ay(k) ̸= 0, no matter how big the iteration index k is,

where A is defined in (4.3) [cf. the last equality constraint of problem (3.2)].

However, the computation of a feasible point and deriving related convergence results

are of utmost importance from both analytical and practical perspectives. Thus, we next

provide an exposition for computing a feasible point by using y(k)s and quantifying the

convergences of the related sequences of feasible points.

First, a simple criterion for computing a feasible point by using y(k)s is presented

below.

Remark 16. Let ỹ(k) be a point in IRnm given by

ỹ(k) =
1

m
(1m×m ⊗ In) y

(k), (4.118)

where y(k) is given in (4.44). Then ỹ(k) is a feasible point of the problem (3.2).

Proof. It is straightforward to see that ỹ(k) is computed simply by averaging y
(k)
i s. In

particular,

ỹ(k) =
�
(ỹ

(k)
1 )T . . . (ỹ(k)

m )T�T
, (4.119)
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where ỹ
(k)
i = 1/m

Pm
i=1 y

(k)
i for all i ∈ {1, . . . ,m}. Thus, the last equality constraint of

the problem (3.2) is satisfied with ỹ
(k)
i , i ∈ {1, . . . ,m}. Moreover, the first constraint of

the problem (3.2) is also satisfied with ỹ
(k)
i for all i ∈ {1, . . . ,m}, because it is a convex

combination of y(k)
1 , . . . ,y

(k)
m−1, and y

(k)
m with y

(k)
i ∈ Y , for all i ∈ {1, . . . ,m}. Thus, ỹ(k)

is a feasible point of the problem (3.2).

Next, we present some important results which are useful when deriving convergences

of primal feasible points.

Lemma 12. Let y be a vector in Ȳ given in (4.1) and ỹ = 1/m (1m×m ⊗ In) y (cf. Defi-

nition 12). Then,

1. ∥y − y⋆∥ ≥ ∥ỹ − y⋆∥.

2. ∥ỹ − y⋆∥ ≥ (1/D̃)(f(ỹ)− f(y⋆)), if D̃ < ∞, where

D̃ = sup
ŷ∈Ȳ
Aŷ=0

{∥ν∥ | ν ∈ ∂f(ŷ)}, (4.120)

and A is defined in (4.3).

Proof. Let B = (1/m)(1m×m ⊗ In) for clarity. We note that σ(1m×m) = {0,m} and

σ(In) = {1}. Then, it is straightforward to see that

σ(1m×m ⊗ In) = {λµ | λ ∈ σ(1m×m) and µ ∈ σ(In)}, (see Remark 6)

= {m}. (4.121)

Thus we have

∥B∥2 = max
λ∈σ(B)

|λ| (4.122)

= (1/m) max
λ∈σ(1m×m⊗In)

|λ| (4.123)

= 1, (4.124)
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where (4.122) follows because B is symmetric (cf. Part 3 of Remark 5), (4.123) follows

by simple calculations, and (4.124) is straightforward using (4.121). Then

∥ỹ − y⋆∥ = ∥By −By⋆∥ (4.125)

≤ ∥B∥2∥y − y⋆∥ (4.126)

= ∥y − y⋆∥, (4.127)

where (4.125) follows using that ỹ = By (cf. Remark 16) together with that y⋆ =

By⋆, because the local solutions yis satisfy the consistency constraint yi = yi+1, i =

1, . . . ,m − 1 in problem (3.2) at the optimal point, and (4.126) follows by part 4 of

Remark 5. Finally (4.127) follows because, ∥B∥2 = 1 [cf. (4.124)].

The second assertion is essentially based on the convexity of f and (4.120). In partic-

ular, we have

f(ỹ)− f(y⋆) ≤ ∥ν̃∥∥ỹ − y⋆∥, ∀ ỹ ∈ Yfeas, ∀ ν̃ ∈ ∂f(ỹ) (4.128)

≤ D̃ ∥ỹ − y⋆∥, ∀ ỹ ∈ Yfeas, (4.129)

where Yfeas = {y ∈ dom f | y ∈ Ȳ , Ay = 0}.

It is worth noting that part 2 of Lemma 12 relies on certain Lipschitzian properties of

the primal function f [cf. Assumption 4.1.2].

4.2.4.2 Convergence Properties Using Feasible Points Under CASE 1

The convergence properties of primal feasible points {ỹ(k)} under CASE I using the non-

summable step size rule are established below. Here we do not provide a separate conver-

gence proof for the constant step size rule as it is a particular case of the nonsummable

step size rule (cf. Remark 13). Thus, the convergence properties using the constant step

size rule γk = γ are also characterized using the following proposition.
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Proposition 4.2.5. Suppose Assumption 1, Assumptions 2, Assumption 3, and Assump-

tion 4.1.1 hold. Let {λ(k)} be the sequence of Lagrange multipliers generated by ei-

ther Algorithm 5 or Algorithm 6, {y(k)} be the corresponding sequence of primal vari-

ables, and {ỹ(k)} be the resulting sequence of primal feasible points, where ỹ(k) =

1/m (1m×m ⊗ In) y
(k). Moreover, suppose that the functions fi, i = 1, . . . ,m are dif-

ferentiable and the distance from λ(k) to the dual optimal solution λ⋆, i.e., ∥λ(k) − λ⋆∥

is uniformly bounded by some scalar D. Let γk satisfies the nonsummable step size rule

given in (4.45) with 0 < γk ≤ 1/Lh. Then

1. lim
k

min
i∈{0,...,k}

∥ỹ(i) − y⋆∥ ≤
p

2Dϵ/µ.

2. for γk = γ/(k + 1)p, where 0 < γ ≤ 1/Lh and 0 ≤ p ≤ 1,

min
i∈{0,...,k}

∥ỹ(i) − y⋆∥ =





O

�
1

4
√
k1−p

�
+
p

2Dϵ/µ p ∈ [0, 1)

O

�
1

4
√
ln k

�
+
p

2Dϵ/µ p = 1,

(4.130)

and the best convergence rate is of the order O(1/ 4
√
k), which is achieved when

p = 0.

Proof. Part 1 of Lemma 12 yields that

min
i∈{0,...,k}

∥ỹ(i) − y⋆∥ ≤ min
i∈{0,...,k}

∥y(i) − y⋆∥. (4.131)

Thus the part 1 of Proposition 4.2.5 is straightforward using part 1 of Proposition 4.2.2.

The equation (4.131) together with part 3 of Proposition (4.2.2) claims the second

part of the proposition. Moreover, using (4.130), it is straightforward to see that the best

convergence rate is of order O(1/ 4
√
k), which is achieved when p = 0, i.e., the constant

step size rule γk = γ.

It is important to note that the hypotheses of Proposition 4.2.5 do not provide any

means for quantifying a bound on the error of primal objective values evaluated at feasi-
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ble points {ỹ(k)}, i.e., a bound on ∥f(ỹ(k))−f(y⋆)∥. However, a quantification is possible

with both strong convexity and gradient Lipschitz continuity properties of f (cf. Assump-

tion 4.1.1 and Assumption 4.1.2), i.e., under CASE 2.

4.2.4.3 Convergence Properties Using Feasible Points Under CASE 2

The convergence properties of primal feasible points {ỹ(k)} and primal objective values

{f(ỹ(k))} under CASE 2 using constant step size rule are asserted below.

Proposition 4.2.6. Suppose Assumption 1, Assumptions 2, Assumption 3, Assumption 4.1.1,

and Assumption 4.1.2 hold. Let {λ(k)} be the sequence of Lagrange multipliers gen-

erated by either Algorithm 5 or Algorithm 6, {y(k)} be the corresponding sequence of

primal variables, and {ỹ(k)} be the resulting sequence of primal feasible points, where

ỹ(k) = 1/m (1m×m ⊗ In) y
(k). Moreover, suppose that the functions fi, i = 1, . . . ,m are

differentiable. Let the step size γk = γ for all k ∈ Z0
+. Then for 0 < γ ≤ 1/Lh,

1. lim sup
k

∥ỹ(k) − y⋆∥ ≤ ϵ√
µµh

.

2. lim sup
k

∥f(ỹ(i))− f(y⋆)∥ ≤ D̃ϵ√
µµh

, where D̃ is defined in (4.120).

3. the least upper bound of min
i∈{0,...,k}

∥ỹ(i) − y⋆∥ converges into a neighbourhood of 0

with the rate of geometric progression.

4. the least upper bound of min
i∈{0,...,k}

∥f(ỹ(i))−f(y⋆)∥ converges into a neighbourhood

of 0 with the rate of geometric progression.

Proof. The proofs of all the parts of the proposition are straightforward using Propo-

sition 4.2.3, combined with Lemma 12. More specifically, Lemma 12 provides upper-

bounds for ∥ỹ(k) − y⋆∥ and f(ỹ(k)) − f(y⋆) using ∥y(k) − y⋆∥. Thus the proof of the

proposition is straightforward using Proposition 4.2.3, which asserts convergence results

using primal variables y(k).
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Proposition 4.2.7. Suppose Assumption 1, Assumptions 2, Assumption 3, Assumption 4.1.1,

and Assumption 4.1.2 hold. Let {λ(k)} be the sequence of Lagrange multipliers gen-

erated by either Algorithm 5 or Algorithm 6, {y(k)} be the corresponding sequence of

primal variables, and {ỹ(k)} be the resulting sequence of primal feasible points, where

ỹ(k) = 1/m (1m×m ⊗ In) y
(k). Moreover, suppose that the functions fi, i = 1, . . . ,m

are differentiable. Let γk satisfies the nonsummable step size rule given in (4.45) with

0 < γk ≤ 1/Lh. Then

1. lim sup
k

∥ỹ(k) − y⋆∥ ≤ ϵ
p
1/(µµh).

2. lim sup
k

∥f(ỹ(i))− f(y⋆)∥ ≤ D̃ϵ
p

1/(µµh), where D̃ is defined in (4.120).

3. for γk = (c/µh)/(k + 1)p, where 0 < p ≤ 1 and 0 < c ≤ µh/Lh,

∥ỹ(k) − y⋆∥ = O

�
1

kc/2p

�
+

ϵ

µh

.

4. for γk = (c/µh)/(k + 1)p, where 0 < p ≤ 1 and 0 < c ≤ µh/Lh,

f(ỹ(k))− f(y⋆) = O

�
1

kc/2p

�
+

D̃ϵ

µh

.

Proof. The proofs of all the parts of the proposition are straightforward using Proposi-

tion 4.2.4, combined with Lemma 12, which provides upperbounds for ∥ỹ(k) − y⋆∥ and

f(ỹ(k))− f(y⋆) using ∥y(k) − y⋆∥.

4.3 Convergence Analysis: General Consensus

In Chapter 3, we have introduced the main problem [cf. problem (3.1)] that is considered

in our study. In particular, the problem was known as the global consensus problem, as

all the local functions fis depend on the same global variable z. However, the global

consensus problem (3.1) can easily be extended to a more generalized setting, where the

local functions fis depend only on a part of the variable z. Thus, the focus of this chapter is
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to introduce the generalized problem formulation, and discuss how all our derivations and

results presented in Chapter 4.1 and Chapter 4.2 can be extended under this generalized

setting.

4.3.1 Generalized Problem Formulation

We consider a network consisting of m subsystems, where m ∈ Z+ with associated func-

tions fis, i ∈ {1, . . . ,m}. Unlike the global consensus problem (3.1) (cf. Chapter 3.1),

fis of the general case need not depend on the whole vector z ∈ IRn. Instead, we consider

that fis depend on different parts of the variable z. Without loss of generality, this can

be modeled by partitioning z into q subvectors, zj , j ∈ Q = {1, . . . , q}, each of which

can be an argument of fis. In particular, we refer to partitions as nets and zj as the net

variable associated with net j ∈ Q (cf. Figure 4.2). We consider that associated with jth

net, there is a set Yj ⊆ IRnj such that zj ∈ Yj . Thus, the generalized problem formulation

is
minimize

Pm
i=1 fi(E

T
i z)

subject to z ∈ Y1 × · · · × Yq,
(4.132)

where each fi, i ∈ {1, . . . ,m} is strictly convex, and the matrix Ei encodes the selection

of net variables of subsystem i. We refer the problem (4.132) as the general consensus

problem.

We made the following assumption on each Yj, j ∈ Q and fi, i ∈ {1, . . . ,m} (cf. As-

sumption 1)

Assumption 4.3.1 (Closedness). The sets Yjs and the functions fis are closed.

To equivalently transform the problem (4.132) into a form of (3.2) (especially to obtain

a distributed solution method), we need to introduce local versions of the net variables zj .

To this end, first we let mj denote the number of subsystems whose objective function

depends on zj and Mj = {1, . . . ,mj}, j ∈ Q. Moreover, for notational convenience,

let us enumerate the local versions of the net variables as ykj , where j ∈ Q and k ∈
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1 2 3 4 5

z1 z2 z3

y11 y12y21 y22 y13 y23 y33

Figure 4.2: Decomposition structure: There are five subsystems and three nets (i.e., q = 3)
with the public variable z = [zT

1 zT
2 zT

3 ]
T. Net variables are z1, z2, and z3. Functions

associated with subsystems are f1(z1), f2(z1, z2), f3(z2, z3), f4(z3), and f5(z3). The sets
M1 = M2 = {1, 2}, and M3 = {1, 2, 3}.

Mj ( cf. Figure 4.2). Finally, to associate ykjs to respective subsystems, we denote by

[y]i the vector of local versions of the net variables owned by the subsystem i, where

y = [yT
11 . . . yT

mqq]
T. For example, [y]1 = y11, [y]2 = [yT

21 yT
12]

T, [y]3 = [yT
22 yT

13]
T,

[y]4 = y23, and [y]5 = y33 in Figure 4.2. Thus, the problem is equivalently reformulated

as
minimize fgen(y) =

Pm
i=1 fi([y]i)

subject to ykj ∈ Yj, j ∈ Q, k ∈ Mj

ykj = y(k+1)j, j ∈ Q, k ∈ Mj \ {mj},

(4.133)

where the variable is y ∈ IR
Pq

j=1 njmj . The equality constraint ykj = y(k+1)j , k ∈

Mj \ {mj} ensures the consistency of the local variables associated with jth net. It

is not difficult to verify that the problem (4.133) decouples among subsystems, leading to

distributed algorithms.

The equality constraint of problem (4.133) is equivalent to Ajyj = 0, where yj =

[yT
1j . . . yT

mjj
]T and Aj ∈ IRnj(mj−1)×njmj , a matrix similar to (4.3) with the structure

given by:

Aj =




Inj
−Inj

0 · · · · · · · · · 0

0 Inj
−Inj

0 · · · · · · 0

0 0 Inj
−Inj

0 · · · 0

...
... . . . . . . . . . . . . ...

0
... . . . 0 Inj

−Inj
0

0 0 · · · · · · 0 Inj
−Inj




, (4.134)

where j ∈ Q. Thus, the dual function ggen : IR
Pq

j=1 nj(mj−1) → IR associated with the
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problem (4.133) is given by

ggen(λ) = inf
yj∈Y

mj
j , j∈Q

[
mX

i=1

fi([y]i) +

qX

j=1

λT
jAjyj], (4.135)

where 3 λ = [λT
1 . . . λT

q ]
T and λj ∈ IRnj(mj−1), j ∈ Q. Let’s consider an example in the

general setting for clarity.

Example 3. We consider a network consisting of five subsystems with three nets. That is,

q = 3 and Q = {1, 2, 3} (cf Figure 4.2). Then we discuss the decomposition structure

associated with this network.

Suppose that the subsystems 1 and 2 are associated with net 1, Subsustems 2 and 3 are

associated with net 2, and subsystems 3, 4, and 5 are associated with net 3. Thus we have

M1 = M2 = {1, 2}, and M3 = {1, 2, 3}. Consequently, we have that the local versions

of the net variables owned by subsystems are [y]1 = y11, [y]2 = [yT
21 yT

12]
T, [y]3 =

[yT
22 y

T
13]

T, [y]4 = y23, and [y]5 = y33 (cf. Figure 4.2). Suppose that the sets associated

with nets are Y1 = Y2 = Y3 = IR, the set of real numbers, for clarity. Then the distributed

problem associated with our network is given by [cf. the distributed problem (4.133)]

minimize fgen(y) =
P5

i=1 fi([y]i)

subject to y11 ∈ IR, y21 ∈ IR, y12 ∈ IR, y22 ∈ IR, y13 ∈ IR, y23 ∈ IR, y33 ∈ IR

y11 = y21

y12 = y22

y13 = y23

y23 = y33,

(4.136)

where y = [y11 y21 y12 y22 y13 y23 y33]
T.

It is worth noting that the first equality constraint of (4.136) is associated with net 1

3We use the same notation λ as in (3.3) for notational simplicity.
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and is equivalent to A1y1 = 0, where

y1 = [y11 y21]
T, and A1 = [1 − 1]. (4.137)

Next, the second equality constraint of (4.136) is associated with net 2 and is equiva-

lent to A2y2 = 0, where

y2 = [y12 y22]
T, and A2 = [1 − 1]. (4.138)

Finally, the third and forth equality constraints of (4.136) are associated with net 3 and

are equivalent to A3y3 = 0, where

y3 = [y13 y23 y33]
T, and A3 =



1 −1 0

0 1 −1


 . (4.139)

Then the dual function ggen : IR4 → IR associated with the generalized problem

(4.136) is given by [cf. the dual problem (4.135)]

ggen(λ) = inf
y1,y2∈IR2,y3∈IR3

[
5X

i=1

fi([y]i) +
3X

j=1

λT
jAjyj]

= inf
y1,y2∈IR2,y3∈IR3

�
f1(y11) + f2(y21,y12) + f3(y22,y13) + f4(y23) + f5(y33)

+ λ11(y11 − y21) + λ12(y12 − y22) + λ13(y13 − y23)

+ λ23(y23 − y33)
�

(4.140)

=
h

inf
y11∈IR

(f1(y11) + λ11y11)
i
+
h

inf
y21,y12∈IR

(f2(y21,y12) + λ12y12 − λ11y21)
i

+
h

inf
y22,y13∈IR

(f3(y22,y13) + λ13y13 − λ12y22)
i

+
h

inf
y23∈IR

(f4(y23) + (λ23 − λ13)y23)
i
+
h

inf
y33∈IR

(f5(y33)− λ23y33)
i

(4.141)

where λ = [λ11 λ12 λ13 λ23]
T and λ11, λ12, λ13, and λ23 are Lagrange mulipliers as-
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sociated with the equality constraints y11 = y21, y12 = y22, y13 = y23, and y23 = y33

respectively. Here (4.140) follows using [y]is, the local versions of the net variables

owned by the subsystems, and using related Aj and yj for each net j (cf. (4.137), (4.137),

and (4.137)). The last equality (4.138) follows because, for fixed λ, the infimization can

be performed in parallel by each subsystem. Thus, the related subproblems that can be

solved locally by subsystems are given by

Subproblem 1 :
h

inf
y11∈IR

(f1(y11) + λ11y11)
i

(4.142)

Subproblem 2 :
h

inf
y21,y12∈IR

(f2(y21,y12) + λ12y12 − λ11y21)
i

(4.143)

Subproblem 3 :
h

inf
y22,y13∈IR

(f3(y22,y13) + λ13y13 − λ12y22)
i

(4.144)

Subproblem 4 :
h

inf
y23∈IR

(f4(y23) + (λ23 − λ13)y23)
i

(4.145)

Subproblem 5 :
h

inf
y33∈IR

(f5(y33)− λ23y33)
i

(4.146)

The related dual problem is given by

maximize
λ∈IR4

ggen(λ). (4.147)

Then, the dual problem (4.147) can be solved either in a partially or fully distributed

manner using related distributed subgradient algorithms (cf. Algorithm5 and Algorithm 6).

4.3.2 Generalized Results

In this section, we will present how all the theoretical derivations established in this study

using the global consensus problem (3.1) (cf. Chapter 4.1 and Chapter 4.2) can be gen-

eralized using the general consensus problem (4.132). Specifically, we will rely on some

useful assumptions, which are in tern used to generalize the results.

Let r(k)lj be the distortion associated with y
(k)
lj , where j ∈ Q, l ∈ Mj , and k ∈ Z0

+

111



during subproblem coordination, cf. (3.11), (For example, see the subproblems associated

with Example 3, cf. (4.142), (4.143), (4.144), (4.145), and (4.146)). Then, we made the

following assumption on r
(k)
lj , where j ∈ Q, l ∈ Mj , and k ∈ Z0

+.

Assumption 4.3.2 (Absolute Deterministic Distortion). The distortion r
(k)
lj associated

with y
(k)
lj is bounded by εlj , where j ∈ Q, l ∈ Mj , and k ∈ Z0

+, i.e.,

∥r(k)lj ∥ ≤ εlj, j ∈ Q, l ∈ Mj, k ∈ Z0
+. (4.148)

Next, we made the following two hypotheses that is satisfied by most standard local

objective functions considered in the literature. However, we note that these two assump-

tions are explicitly invoked only when necessary.

Assumption 4.3.3 (Strongly Convex local Objectives at Subsystems). The local objec-

tive functions fis in problem (4.133) are strongly convex with constant µgeni > 0, i =

1, . . . ,m.

Assumption 4.3.4 (Gradient Lipschitz Continuous local objectives at subsystems). The

sets Yj , j ∈ Q in problem (4.133) equal IRn. Moreover, fis are differentiable and the

gradients ∇fis are Lipschitz continuous with constant Lgen
i > 0, i = 1, . . . ,m.

Finally, we rely on the strong duality assumption.

Assumption 4.3.5 (Strong Duality). The optimal values p⋆gen and d⋆gen of the problems

(4.133) and (3.8), respectively, are attained. Moreover, strong duality between (4.133)

and (3.8) holds, i.e.,

p⋆gen = f(y⋆
gen) = ggen(λ

⋆) = d⋆gen, (4.149)

for some y⋆
gen ∈ {ygen ∈ IRnm | ∀ i yi ∈ Y , Ay = 0} and for some λ⋆ ∈ IRn(m−1),

where A is defined in (4.3).

Then, with the key changes pointed out in the following results, all the remaining

theoretical assertions presented in Section 4.1.4 and Chapter 4.2 can be generalized in a

straightforward manner.

112



First, we highlight the relationship between the dual function ggen [cf. (4.135)] and the

conjugate function f ∗
gen [cf. Lemma 3 corresponding to the problem (3.2)] of fgen+ δȲgen

,

where Ȳgen denotes the Cartesian product of Ymj

j s, j ∈ Q, i.e.,

Ȳgen = Ym1
1 × . . .Ymq

q ,

where Ymj

j , j ∈ Q denotes the mj-fold Cartesian product of Y .

Corollary 5 (cf. . Lemma 3). Let Agen = diag(A1, . . . ,Aq). i.e.,

Agen =




A1 0 · · · 0

0 A2 · · · 0

...
... . . . ...

0 0 · · · Aq



, (4.150)

where Aj , j ∈ Q has the similar form given in (4.134). Then ggen(λ) = −f ∗
gen(A

T
genλ),

where f ∗
gen : IR

Pq
j=1 njmj → IR denotes the conjugate function of fgen + δȲgen

.

Proof. The equality constraint Ajyj = 0, j ∈ Q of the problem (4.133) is equivalent to

AgenY = 0, where Y = [yT
1 . . . yT

q ]
T and yj = [yT

1j . . . yT
mjj

]T for all j ∈ Q. Hence,

the result ggen(λ) = −f ∗(Agenλ) is straightforward by using the similar approach used

in the proof of Lemma 3.

Corollary 6 (cf. Proposition 1). Suppose Assumption 4.3.1 and Assumption 4.3.3 hold.

Then the dual function ggen is differentiable and ∇ggen is Lipschitz continuous with con-

stant (1/µgen)maxj∈Q λmax(AjA
T
j ), where µgen represents the strong convexity constant

of fgen in (4.133) (cf Lemma 4).

Proof. The proof of Corollary 6 is similar to that presented in the proof of Proposi-

tion 1. In particular, replace g and A in the proof of Proposition 1 [cf. Chapter 4.1.2]

with ggen and Agen, respectively. Then it immediately follows that ∇ggen is Lipschitz

continuous with the constant (1/µgen)λmax(AgenA
T
gen) [cf. (4.18)]. Here AgenA

T
gen ∈
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IR
Pq

j=1 nj(mj−1)×Pq
j=1 nj(mj−1) is a block diagonal matrix with the structure

AgenA
T
gen =




A1A
T
1 0 · · · 0

0 A2A
T
2 · · · 0

...
... . . . ...

0 0 · · · AqA
T
q



, (4.151)

where AjA
T
j ∈ IRnj(mj−1)×nj(mj−1) for all j ∈ Q. Thus, the result yields because

λmax(AgenA
T
gen) = maxj∈Q λmax(AjA

T
j ).

Corollary 7 (cf. Proposition 2). Let Assumption 4.3.4 holds. Then the function −ggen is

strongly convex with constant (1/Lgen)minj∈Q λmin(AjA
T
j ), where Lgen represents the

gradient Lipschitz continuous constant of fgen in (4.133) (cf Lemma 5).

Proof. Replace g and A in the proof of Proposition 2 [cf. Chapter 4.1.3] with ggen [cf. (4.135)]

and Agen [cf. (4.150)], respectively. Then we have −ggen is strongly convex with the con-

stant (1/Lgen)λmin(AgenA
T
gen) [cf. (4.31)], where AgenA

T
gen has the same structure as

given in (4.151). Thus, λmin(AgenA
T
gen) = minj∈Q λmin(AjA

T
j ) and the result holds.

4.4 Numerical Results

In this section, we test empirically the theoretical assertions presented in this study. To

this end, problem (3.2) is considered with quadratic fis, i.e.,

fi(yi) = yT
i Aiyi + qT

i yi, Ai ∈ Sn
++, qi ∈ IRn, (4.152)

where Ai and qi are arbitrarily chosen. Let li and νi denote the minimum and maximum

eigenvalues of the matrix Ai respectively, where i ∈ {1, . . . ,m}. Since Ais are positive

definite, each fi is strongly convex with constant li, i ∈ {1, . . . ,m}. Thus, Assump-

tions 4.1.1 holds. Moreover, Assumption 3 and closedness of fis [cf. Assumption 1] also

hold throughout the rest of the chapter. More specifically, we consider a system consist-
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ing of five subsystems (i.e., m = 5) with scalar valued local variables yi (i.e., n = 1). In

particular, simulation results demonstrate convergence properties of both cases CASE 1

and CASE 2 (cf. Chapter 4.2).

4.4.1 CASE 1: Strongly Convex Local Objectives at Subsystems

We consider that the constraint set Y = {u ∈ IRn | − a1n×1 ≤ u ≤ a1n×1}, where a ∈

IR+ (cf. Problem (3.2)). Then Y is a box of width 2a per-dimension. Thus, Y is not only

closed [cf. Assumption 1], but also compact. Note that the CASE 1 represents a scenario

where the dual function g is with Lipschitz continuous gradients (cf. Proposition 1). We

consider that the distorted vector d̂(k) [cf. (3.10)] is a consequence of a naive quantization

scheme implemented in step 4 of Algorithm 6. In particular, the box Y is partitioned

into identical mini-boxes of width t = 2a/2b per-dimension, where b ∈ Z+ represents

the number of bits transmitted per-dimension (note that one side of the box Y is then split

in to 2b parts). The indexing of the mini-boxes is common to all subsystems. In step 4

of the Algorithm 6, the subsystem i first chooses ŷ(k)
i to be the centroid of the mini-box

in which y
(k)
i lies (see Figure4.3 for clarity). Then the index of the chosen mini-box is

transmitted, which is simply an nb-bit word. As a result, the norm of the distortion r
(k)
i

associated with y
(k)
i is bounded as remarked below, conforming to Assumption 2.

Remark 17. the distortion r
(k)
i of y(k)

i is bounded, i.e., ∥r(k)i ∥ ≤ εi =
√
n a/2b, where

i ∈ {1. . . . ,m}.

Proof. We have that the distortion r
(k)
i = ŷ

(k)
i − y

(k)
i [cf. (3.11)]. Then

∥r(k)i ∥ ≤

vuut
nX

i=1

�
t

2

�2

(4.153)

=
t

2

√
n, (4.154)

=

√
n a

2b
, (4.155)

where (4.153) follows because the distortion r
(k)
i does not exceed half of a diagonal of
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•
•y

(k)
i

ŷ
(k)
i

t

Figure 4.3: The quantization scheme in CASE 1 with n = 2 and b = 2. The constraint set
Y is a box of width 6 per dimension. The box is partitioned into identical 16 mini-boxes
of width t = 1.5. The exact solution y

(k)
i of subsystem i is given in blue. The distorted

vector ŷ(k)
i which is given in red, is chosen to be the centroid of the respective mini-box.

a mini-box of width t, (4.154) is straightforward using simple calculation, and (4.155)

follows using t = 2a/2b, the width of a mini-box.

Next, the absolute deterministic distortion ∥r(k)∥ of the subgradient d(k), where r(k) =

d̂(k) − d(k) [cf. (4.46)] is bounded as stated below.

Remark 18. The norm of the total error vector r(k) = d̂(k) − d(k) of the subgradient d(k)

is bounded, i.e., ∥r(k)∥ ≤ ϵ = a
p

n(m− 1)/2b−1 (cf. Corollary 2).

Proof. Using equation (4.46) (cf. Remark 14 of Chapter 4.2 and (4.47)) we have

∥r(k)∥ ≤

vuut
m−1X

i=1

(εi + εi+1)2

=

vuut
m−1X

i=1

�
2
√
na

2b

�2

(4.156)

=
a
p

n(m− 1)

2b−1
, (4.157)

where (4.156) follows using Remark 17 and (4.157) follows by simple calculation.
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Figure 4.4: CASE 1: Convergence of minimal norm gradients of the negative dual func-
tion h. The figure shows the effect of choice of p in the step size γk = (1/Lh)/(k + 1)p

on the the convergence, by fixing b = 5.
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Figure 4.5: CASE 1: Convergence of minimal norm gradients of the negative dual func-
tion h. The figure shows the effect of choice of b on the convergence, by fixing γk = 1/Lh.
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Figure 4.6: CASE 1: Convergence of minimal norm primal feasible points of the problem
(3.2). The figure shows the effect of the choice of p in the step size γk = (1/Lh)/(k+1)p

on the convergence by fixing b = 5.
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Figure 4.7: CASE 1: Convergence of minimal norm primal feasible points of the problem
(3.2). The figure shows the effect of the choice of b on the convergence by fixing γk =
1/Lh.
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Figure 4.8: CASE 1: The effect of dimension n of the local variables yis on SO using
fixed step size rule γk = 1/Lh for different bits.

We illustrate the convergence properties of CASE 1 using Y with a = 3. Figure 4.4

and Figure 4.5 show the convergence of minimal norm gradients of the negative dual func-

tion h, i.e., the convergence results established in Corollary 2 (note that the Corollary 1

directly reduces to Corollary 2 when p = 0). In particular, Figure 4.4 depicts the effect

of the choice of p in the step size γk = (1/Lh)/(k + 1)p by fixing b = 5. Results show

that the smaller the value of p, the higher the rate of convergence, as claimed in Corol-

lary 2-(2). Moreover, the figure demonstrates that the best rate is achieved when p = 0

which corresponds to the fixed step size rule. Figure4.5 shows the effect of the choice

of b on the convergence of minimal norm gradients of h, by fixing γk = 1/Lh (i.e., the

fixed step size rule). Results show that when the number of bits b increases the size of the

neighborhood around 0 to which mini ∥∇h(λ(i))∥ converges decreases. This is readily

expected from Corollary 2-(1), together with Remark 18, because ϵ, the neighborhood, is

inversely proportional to 2b.

Figure 4.6 and Figure 4.7 show the convergence of corresponding primal feasible

points, the related results derived in Proposition 4.2.5). Results show similar behavior
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Figure 4.9: CASE 1: The effect of number of users m on SO using fixed step size rule
γk = 1/Lh for different bits.

0 2 4 6 8 10

10
−4

10
−3

10
−2

10
−1

10
0

n

m
in

i∈
{1

,.
..
,K

}
k∇

h
(λ

i )
k

 

 

UB : b = 6
SO : b = 6
UB : b = 10
SO : b = 10
UB : b = 14
SO : b = 14

Figure 4.10: CASE 1: The effect of dimension n of the local variables yis on SO using
nonsummable step size rule γk = 1/(Lhk

0.1) for different bits.

as that of Figures 4.4 and 4.5 with respect to the rate of convergence and the size of the

converging neighborhood respectively. Figure 4.6 shows that the number of iterations re-
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Figure 4.11: CASE 1: The effect of number of users m on SO using nonsummable step
size rule γk = 1/(Lhk

0.1) for different bits.

quired for reaching the neighborhood in the primal domain appears to be relatively smaller

than that in the dual domain, especially for smaller p values. This behavior is typical for

many methods in general because a good feasible point can usually be computed, even

with a relatively smart heuristic method. This means even though a heuristic method need

not find an optimal point, for many instances, it does quickly find a feasible point that is

not too far from the optimal point.

Figure 4.8 and the Figure 4.9 depict the effect of dimension n of the local variables

yis, i ∈ {1, . . . ,m} and the number of users m on the suboptimality (SO), respectively,

using a fixed step size rule γk = 1/Lh for different bits (b = 6, 10, and 14). The sub-

optimality is measured in terms of mini∈{0,...,K} ∥∇h(λ(i))∥, where K is the iteration

index at the algorithm termination. The Figure 4.8 demonstrates the convergence results

using two users, i.e., m = 2. The effect of the number of users m on SO presented in

Figure 4.9 is illustrated using n = 1. Each curve in both figures demonstrates averaged

values obtained for SO using 100 variations of the problem (3.2). Variations are obtained

by randomizing the matrix Ai and the vector qi in (4.152). Figures exhibit that SO in-
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Figure 4.12: CASE 1: The trade-offs between b and SO for different dimensions n using
fixed step size rule γk = 1/Lh.
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Figure 4.13: CASE 1: The trade-offs between b and SO for different users m using fixed
step size rule γk = 1/Lh.

creases as n and m increase. This is expected as claimed in Lemma 8 because, the upper

bound ϵ on convergence, [cf. (4.55)] directly depends on n and m [See Remark 18]. More-

over, the upper bound ϵ for each curve is demonstrated within the graphs (curves without
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Figure 4.14: CASE 1: The trade-offs between b and SO for different dimensions n using
nonsummable step size rule γk = γ0/k, where γ0 is chosen suitably.
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Figure 4.15: CASE 1: The trade-offs between b and SO for different users m using
nonsummable step size rule γk = γ0/k, where γ0 is chosen suitably.
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Figure 4.16: CASE 2: Convergence of dual function iterates using constant and non-
summable step sizes.

marker symbols). Figures 4.10 and 4.11 show the corresponding convergences using the

nonsummable step size rule γk = 1/(Lhk
0.1). The figures show similar behaviors as that

obtained in Figures 4.8 and 4.9.

Figure 4.12 and Figure 4.13 show trade-offs between b (bits per-dimension) and SO

for different dimensions n and different users m, respectively, using a fixed step size rule

γk = 1/Lh. Figure 4.12 shows the convergence results using m = 2 for different n, and

Figure 4.13 depicts the related results using n = 1 for different m. In particular, each

curve in both figures demonstrates averaged values obtained for SO using 100 variations

of the problem (3.2). The figures show that for fixed b, SO increases as n or m increases.

Figures 4.14 and 4.15 show the corresponding convergences using the nonsummable step

size rule γk = γ0/k, where γ0 ∈ IR+ is chosen suitably. The figures show similar behav-

iors as that obtained in Figures 4.12 and 4.13.
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Figure 4.17: CASE 2: Effect of choice of ς on the convergence of dual function iterates.

4.4.2 CASE 2: Strongly convex and gradient Lipschitz Continuous

local objectives at subsystems

Let Y = IRn, i.e., Y is closed [cf. Assumption 1]. In this setting, each fi is strongly

convex with constant li (cf. Assumption 4.1.1) and with a Lipschitz continuous gradient

with constant νi (cf. Assumption 4.1.2), i ∈ {1, . . . ,m} (since Ais are positive definite).

Thus, the dual function g is with a Lipschitz continuous gradient and is strongly concave

(cf. Proposition 1 and Proposition2).

We consider that the distorted vector d̂(k) [cf. (3.10)] is a consequence of measurement

errors at CN in step 6 of Algorithm 5. The magnitudes of measurement errors are bounded

from above by some ς > 0 per dimension. As a result, the distortion r
(k)
i of y(k)

i is bounded

s.t., ∥r(k)i ∥ ≤ εi =
√
n ς , conforming to Assumption 2. Then the absolute deterministic

distortion ∥r(k)∥ of the subgradient d(k) [cf. (4.46)] is bounded as follows.

Remark 19. The norm of the total error vector r(k) = d̂(k) − d(k) of the subgradient d(k)

is bounded, i.e., ∥r(k)∥ ≤ ϵ = 2
p
n(m− 1) ς , cf. Corollary 3 and Corollary 4.
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Figure 4.18: CASE 2: Convergence of primal feasible points using constant and non-
summable step sizes.
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Figure 4.19: CASE 2: Effect of choice of ς on the convergence of primal feasible points.

Proof. The proof of Remark 19 is straightforward using equation (4.47) of Remark 14.

Figure 4.16 shows the convergence of dual function iterates for both fixed step size

rule (i.e., Corollary 3) and for nonsummable step size rule (i.e., Corollary 4). In particular,
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Figure 4.20: CASE 2: The effect of dimension n of the local variables yis on SO using
fixed step size rule γk = 1/Lh for different ς .
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Figure 4.21: CASE 2: The effect of number of users m on SO using fixed step size rule
γk = 0.01 for different ς .

the figure shows that linear convergence is guaranteed with fixed step sizes, while γk =

1/Lh is the best choice. This clearly agrees with the assertions claimed in Corollary 3 [

cf. (4.82)]. Moreover, results demonstrate the effect of the choice of p in the step size
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Figure 4.22: CASE 2: The effect of dimension n of the local variables yis on SO using
nonsummable step size rule γk = γ0/k for different ς .
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Figure 4.23: CASE 2: The effect of number of users m on SO using nonsummable step
size rule γk = γ0/k for different ς .
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Figure 4.24: CASE 2: The effect of dimension n of the local variables yis on SO using
fixed step size rule γk = 1/Lh for different ς .

γk = (c/µh)/(k + 1)p by fixing ς = 0.2 and c = 0.004. Note that c is carefully chosen so

that it lies inside the prescribed limits 0 < c ≤ µh/Lh imposed by Corollary 4. Results

show that the smaller the value of p, the higher the rate of convergence, as claimed in

Corollary 4-(2). For comparisons, we have also included the convergence of dual function

values for γk = (c/µh)/(k + 1)p with p = log k/k which can be interpreted as a limiting

case of γk = (c/µh)/(k + 1)p as p → 0 (cf. Remark 11). Results clearly demonstrate a

linear convergence as claimed in Remark 11.

Figure 4.17 shows the effect of the choice of ς by fixing γk = 1/Lh. Results show

that when ς decreases, so is the size of the neighborhood around h(λ⋆) to which h(λ(k))

converges. This behavior is expected from Corollary 3, together with Remark 19, because

ϵ, the neighborhood, is linearly related to ς .

Figure 4.18 and Figure 4.19 show the convergence of corresponding primal feasible

points, i.e. the related results presented in Proposition 4.2.6 and Proposition 4.2.7. Both

figures demonstrate a similar behavior as that of Figure 4.16 and Figure 4.17 with respect

to the rate of convergence and the size of the converging neighborhood, respectively.
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Figure 4.25: CASE 2: The effect of number of users m on SO using fixed step size rule
γk = 0.01 for different bits.
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Figure 4.26: CASE 2: The effect of dimension n of the local variables yis on SO using
nonsummable step size rule γk = γ0/k for different ς .

Figure 4.20 and Figure 4.21 depict the effect of dimension n of the local variables

yis, i ∈ {1, . . . ,m} and the number of users m on SO, respectively, for different mea-
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Figure 4.27: CASE 2: The effect of number of users m on SO using nonsummable step
size rule γk = γ0/k for different ς .

surement errors ς (ς = 0.2, 0.6, and 1). The suboptimality is measured in terms of

∥h(λ(K)) − h(λ⋆)∥, where K is the iteration index at the algorithm termination. Fig-

ure 4.20 demonstrates the convergence results using two users, i.e., m = 2 with fixed

step size rule γk = 1/Lh. The effect of the number of users m on SO is presented in

Figure 4.21 and is illustrated using n = 1 with fixed step size γk = 0.01. The figures

exhibit that SO increases as n and m increase, similarly to the results that we obtained in

CASE 1 (cf. Figure 4.8 and Figure 4.9). Moreover, the upper bound ϵ2/2µh [cf. Corol-

lary 3, equation (4.82)] for each curve is demonstrated within the graphs (curves without

marker symbols). Figures 4.22 and 4.23 show the corresponding convergences using the

nonsummable step size rule γk = γ0/k, where γ0 ∈ IR+ is chosen suitably. The figures

show similar results as those obtained in Figures 4.20 and 4.21.

Figure 4.24 and Figure 4.25 show trade-offs between ς (the measurement error per

dimension) and SO for different dimensions n and different users m, respectively. The

Figure 4.24 shows the convergence results using m = 2 for different n with γk = 1/Lh,

and Figure 4.25 depicts the related results using n = 1 for different m with γk = 0.01.
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The figures show that for fixed ς , SO increases as n or m increases. Figures 4.26 and 4.27

show the corresponding convergences using the nonsummable step size rule γk = γ0/k,

where γ0 ∈ IR+ is chosen suitably. The figures show similar behaviors as that obtained in

Figures 4.24 and 4.25.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusion

In this thesis, we have studied the inexactness of dual decomposition methods for solving

global variable consensus optimization problems that are commonly used in many types

of large-scale signal processing and machine learning application domains. Moreover, we

have provided a systematic exposition on state-of-the-art distributed optimization methods

that cope with large-scale distributed problems. In general, the currently existing state-of-

the-art distributed methods are the subgradient methods, Alternating Direction Method of

Multipliers (ADMM), proximal gradient method, and dual averaging. In particular, two

commonly used distributed methods that are based on the subgradient methods are the

dual decomposition methods and approaches coalescing consensus algorithms with sub-

gradient methods. In this thesis, we primarily use dual decomposition with subgradient

methods to establish our convergence results. The decomposition methods are the gen-

eral approaches to solving optimization problems in a distributed manner. Decomposition

methods are interesting approaches to solving optimization problems by breaking them

up into smaller subproblems and solving each of them separately. Those subproblems are

solved by using an appropriate optimization method such as the subgradient method.

We have developed two distributed algorithms, a partially distributed algorithm and a

fully distributed algorithm that can be deployed over numerous non-ideal settings. More

importantly, our proposed algorithms can model errors in many large-scale optimization

problems, including quantization errors, approximation errors, errors due to subproblem

solver accuracy, noise induced in wireless settings, and measurement errors, among oth-

ers, as long as they are additive and bounded. The convergence properties of proposed
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algorithms were extensively analyzed in both dual and primal domains. More specifically,

convergences of dual variable iterates, primal variable iterates, and primal feasible iterates

are theoretically substantiated along with their rates of convergences. All the convergence

results are established under two main cases, where the CASE 1 is representing a scenario

that the dual function associated with the primal problem is with Lipschitz continuous

gradients, and the CASE 2 is representing a scenario that the negative dual function is

both strongly convex and with Lipschitz continuous gradients. Moreover, all the theoret-

ical results under both cases are derived using both constant and nonsummable step size

rules. Our analytical assertions showed that the feasible points computed by the proposed

algorithms converge into a neighborhood of optimality. The size of the neighborhood

was explicitly quantified in terms of the underlying inexactness. Further, all the preced-

ing convergence assertions were extended to a general consensus formulation. Finally,

numerical experiments were conducted to verify the theoretical results.

5.2 Future Work

In general, the subgradient methods are commonly used to solve many distributed prob-

lems due to their simplicity. However, it would be interesting to analyze other meth-

ods such as ADMM or higher order methods to see whether faster convergences can be

achieved. Further, different types of errors can be explored other than the additive and

bounded errors to see whether it would be possible to get more closer to optimality. In

this thesis, we have discussed the inexactness of dual decomposition methods with a de-

terministic error. However, analyzing the methods with stochastic errors, then which leads

to stochastic subgradient methods would be more convenient with many realistic applica-

tions. Further, the subproblem coordination in our proposed algorithms were considered

with error-free broadcast channels between subsystems. Nevertheless, it would be more

interesting to seek how the results can be extended with more realistic networks. More-

over, another path of research is extending the results with nondifferentiable settings.
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