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On the Convergence of Inexact Gradient Descent
with Controlled Synchronization Steps

Sandushan Ranaweera, Chathuranga Weeraddana, Prathapasinghe Dharmawansa, and Carlo Fischione

Abstract—We develop a gradient-like algorithm to minimize a
sum of peer objective functions based on coordination through
a peer interconnection network. The coordination admits two
stages: the first is to constitute a gradient, possibly with errors,
for updating locally replicated decision variables at each peer and
the second is used for error-free averaging for synchronizing local
replicas. Unlike many related algorithms, the errors permitted in
our algorithm can cover a wide range of inexactnesses, as long
as they are bounded. Moreover, we do not impose any gradient
boundedness conditions for the objective functions. Furthermore,
the second stage is not conducted in a periodic manner, like many
related algorithms. Instead, a locally verifiable criterion is devised
to dynamically trigger the peer-to-peer coordination at the second
stage, so that expensive communication overhead for error-free
averaging can significantly be reduced. Finally, the convergence
of the algorithm is established under mild conditions.

Index Terms—Distributed optimization, inexact algorithms

I. INTRODUCTION

GRadient descent and its variants often lend themselves
fully amenable to parallel and distributed algorithms,

which are highly desirable in large-scale optimization prob-
lems [1]. As a result, solution methods for many problems of
recent interest are predominantly based on such gradient-like
algorithms [2]–[14]. Broadly speaking, those algorithms devel-
opments are twofold [15]: a) a federated setting where a central
controller (CC) intervenes for decision variable update [2]–[8];
b) a peer-to-peer (PP) setting where subsystems (SSs), each
with its replicated decision variable, perform locally the update
through some peer interconnection network, often modeled by
a connected graph [9]–[14]. In this setting, the algorithm relies
on neighbors specified by the graph and does not rely on a
CC like in the federated setting. As such, it appears that PP
setting is more appealing than the CC setting due to many
reasons, such as higher scalability and inherently decentralized
collection of big data sets, among others [1], [15]. In the
context of a PP setting, a more fundamental concern is that
the distributed algorithms usually undergo inevitable inexact
conditions, e.g., unreliable and often limited communication
capabilities [1], [15], [16]. Thus, unlike the inexactnesses
under CC settings [17]–[22], those under PP settings influence
the optimality, convergence, and effective implementation of
algorithms. Consequently, there is an appeal to design effective
algorithms under PP setting [23]–[33].
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Algorithms in [23]–[28] are based on distributed subgra-
dient methods due to [13]. Some of these methods consider
quantization models [23]–[25] and others consider event-
triggered models [26]–[28], so as to reduce the communication
burden between SSs. The gradient boundedness of underlying
objective functions, although a restriction, has been considered
in [23]–[28], a technical assumption that enables convergences.
The errors introduced in [23]–[28] can be viewed as control-
lable, in the sense that they are at the disposal of the algorithm.
For example, quantization models in [23], [25] are chosen to
be unbiased, a favorable condition for convergence. However,
a peer interconnection network can often admit errors that are
not at the disposal of the algorithm, e.g., wireless links [34,
§ 9], limiting the applicability of developments in [23]–[28]

Works in [29]–[33] rely on PP coordination to constitute
a gradient, in contrast to common federated settings where
primal variables are coordinated instead. Then the resulting
gradients are for updating their locally replicated decision
variables. They are persuaded again under quantization settings
(e.g., [29], [30]) and event-triggered settings (e.g., [31], [32]).
Hybrid variants have also been considered by some authors,
e.g., [33]. Similar to the developments noted in the preceding
discussion, errors introduced in [29]–[33] are also controlled
by the algorithms. For example, the quantization models
in [29] and [30] are chosen so that the errors are diminishing
and unbiased, respectively. Moreover, the authors in [31], [33]
have specific impositions on the gradient boundedness.

It is worth noting that many algorithms in either of the set-
ting federated or PP (e.g., [6]–[8], [31]–[33]) have considered
an averaging step performed at periodic or predefined epochs
to enable the consistency of the locally replicates decision
variables. Depending on the context, this entails periodic
communication through the CC or through the PP intercon-
nection network. From a communication overhead point of
view, however, such an overhead for periodic communication
seems like a restriction. This may be avoided by dynamically
choosing the averaging epochs for synchronization.

In this paper, we develop an algorithm that relies on PP
coordination to constitute a gradient for updating locally
replicated decision variables associated with a problem of
minimizing the sum of peer objective functions. The algorithm
iterates two stages. The first is used to exchange gradients
possibly with errors. We have no restrictions on the errors of
local gradient estimates, except that they are bounded. As a
result, our modeling can handle errors beyond those of classic
quantization models with restrictions, such as diminishing
and unbiasedness. For instance, a cheap low-bit quantization
can be used throughout the algorithm iterates under the first
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stage. The second stage is used to error-free averaging for
synchronizing local replicas. In this respect, unlike other
related algorithms, we do not rely on periodic communication
over the PP network. Instead, a locally verifiable criterion is
devised to dynamically trigger the averaging step, only when
necessary. This has the advantage of minimizing expensive
communication overhead. Throughout this paper, we consider
the PP network to be fully connected. 1 Subsequently, the
convergence of the algorithm is established and is shown to
be linear.

II. PROBLEM FORMULATION

Consider N peers or subsystems which solve the problem

minimize f(x) =
∑N

i=1 fi (x) (1)

where x ∈ Rn and fi : Rn → R, i ∈ N ≜ {1, . . . , N}, be a
function satisfying the following standard assumption:

AS 1. The objective function fi, i ∈ N , is strongly convex
with constant ℓi > 0 and is Li-smooth, i.e., ∇fi is Lipschitz
continuous with the constant Li > 0.

A commonly used iterative algorithms for solving prob-
lem (1) is the gradient descent (GD) algorithm x(k+1) =
x(k) − γ

∑N
j=1∇fj

(
x(k)

)
, where k ∈ Z+ ≜ {0, 1, 2, . . .} is

the iteration index and γ is the step size. In contrast, here we
assume a setting where each subsystem (SS) i performs locally
the variable GD update of its own copy x

(k+1)
i of x(k+1). This

setting facilitates a distributed implementation of GD and thus
each SS i relies on a communication with SS j to get a rough
measurement of ∇fj

(
x
(k)
j

)
as specified below:

AS 2. ∀ i, j ∈ N , s.t. i ̸= j, gradient measurement h(k)
ij ∈ Rn

received by i-th SS from j-th SS at k-th iteration is given by

h
(k)
ij = ∇fj

(
x
(k)
j

)
+ ϵ

(k)
ij (2)

where ϵ
(k)
ij ∈ Rn is a error such that ||ϵ(k)ij || ≤ ϵ with || · ||

denoting the Euclidean norm.

The parameters ϵ
(k)
ij model measurement errors, noises,

quantization errors2 due to compression, among others. How-
ever, note the upper bound condition on ϵ

(k)
ij in AS 2, where

ϵ can be thought of as the worst-case characteristic of errors
throughout the algorithm. Under AS 2, the gradient ∇f

(
x
(k)
i

)
is distorted, which in turn admits the following iterate:

x
(k+1)
i = x

(k)
i − γ

∑N
j=1 h

(k)
ij , i ∈ N . (3)

Strictly speaking, the local variables updates should be con-
sistent in the sense that ∀ k ∈ Z+, ∀ i, j ∈ N , x(k)

j = x
(k)
i .

However, (3) with distinct SSs do not admit at least a weaker
form of the consistency, called synchrony given by

∀ i, j ∈ N , i ̸= j, x
(m)
j = x

(m)
i (4)

where m is an iteration index of practical interest, e.g., the
iteration index at the termination. Thus, the main challenge in

1An extension to an arbitrary graph is possible with an additional assump-
tion on the gradient boundedness. The details are provided in the Appendix.

2cf. [19, Definition 2] for such a quantization that yield an error as in AS 2.

this research is to establish the convergence properties of (3),
while maintaining the synchrony. 3 This challenge is taken up
next, where the iterate (3) is integrated with potential SS co-
ordination to yield an algorithm with guaranteed convergence.

III. ALGORITHM DEVELOPMENT

Let us first focus on establishing the evolutionary character-
istics of (3) to set the stage for our subsequent developments.

A. Evolutionary Characteristics of (3)

From (3), (2), together with some standard algebraic ma-
nipulations as shown in the Appendix, it can be shown that,
under AS 1, AS 2 and for γ ∈ (0, 1/

∑N
j=i Lj ],

∥∇f
(
x
(k)
i

)
− h

(k)
i ∥ ≤ 2ϵN (k + 1/2) , i ∈ N (5)

where h
(k)
i ≜

∑N
j=1 h

(k)
ij . The inequality (5) indicates that, in

the worst case, the norm of the difference between ∇f
(
x
(k)
i

)
and its local representation h

(k)
i diverges as k →∞. Thus, it

is of paramount importance to control such growth for estab-
lishing convergence of iterates of the form (3). To this end, it
is customary to rely on SS coordination possibly through an
error-free communication medium. However, error-free com-
munications are usually more expensive. Therefore, unlike the
commonly considered periodic SS coordination [33], we seek
to reduce the communication overhead by dynamically choos-
ing the coordination epochs, so as to make it still possible to
ensure convergences of the underlying sequences. As such, we
consider a relative deviation of the gradient of the objective
function f and its measurement from the standpoint of ith SS,
i.e., e(k)i ≜ ∥∇f

(
x
(k)
i

)
− h

(k)
i ∥/∥∇f

(
x
(k)
i

)
∥, i ∈ N .

Intuitively, when e
(k)
i is sufficiently small, the influence

of errors ϵ
(k)
ij on (3) becomes relatively insignificant. On the

other hand, when e
(k)
i is sufficiently large, the consequences

become more detrimental, and (3) may evolve anomalously.
Thus, to circumvent such anomalies, the objective is to start
with synchrony [cf. (4)] at k = 0 and to perform iterate (3) as
long as e

(k)
i is sufficiently small, for otherwise to trigger SS

coordination. As a result, the iterates (3) at each SSs might
tend to evolve in a meaningful direction.

Let us next discuss how the preceding concept can be
integrated into devise our algorithm. In this respect, the
most crucial step is to identify an epoch at which the SS
coordination is to be triggered. In other words, each SS needs
a locally verifiable characterization of the iterates k for which
e
(k)
i is sufficiently small, despite the dependence of e

(k)
i on

global information ∇f
(
·
)
. As such, we rely on the condition

k ≤ r∥h(k)
i ∥/(2ϵN)− 1/2 =⇒ e

(k)
i ≤ r/(1− r) (6)

where r ∈ (0, 1) is a design parameter, suitably chosen based
on the strong convexity constants and the Lipschitz constants
of the objective functions. The condition (6) follows from (5),
together with that ∥h(k)

i ∥−∥∇f
(
x
(k)
i

)
∥ ≤ ∥∇f

(
x
(k)
i

)
−h(k)

i ∥.

3Under imperfect conditions, iterates of the form (3) are commonplace in
many distributed algorithms such as primal or dual-decomposition methods,
among others, see e.g., [12] and references therein.
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Thus, the SSs perform the iterate (3) independent of each other,
as long as, for all i ∈ N , k ≤ r∥h(k)

i ∥/(2ϵN) − 1/2, and
is referred to as IndComp. If k > r∥h(k)

i ∥/(2ϵN) − 1/2
for at least one SS, SSs communicate with others to average
their local copies x

(k)
i , which is referred to as the intermittent

synchronization (IntSync). IntSync is performed through
an error-free communication system. Having presented the
evolutionary characteristics of (3), we are now ready to
propose our new algorithm.

B. Algorithm and Its Convergence Analysis

The two stages IndComp and IntSync are implemented
in an iterative manner to yield the following algorithm.

Algorithm 1 Inexact GD with IndComp−IntSync

Input: x
(0)
j = x

(0)
i ∀ i, j ∈ N , ϵ ≥ 0, r ∈ (0,

√
ℓ/(
√
L +√

ℓ)), s = 0, k = 0
1: repeat
2: repeat
3: ∀ i ∈ N , compute x

(s+k+1)
i from (3), k ← k + 1

4: until ∃ i ∈ N , k − 1 > r∥h(s+k−1)
i ∥/(2ϵN)− 1/2

5: if k ̸= 1 then
6: ∀ i ∈ N , x(s+k−1)

i ← 1
N

∑N
j=1 x

(s+k−1)
j

7: s← s+ k − 1, k ← 0
8: else
9: ∀ i ∈ N , x(s+k)

i ← 1
N

∑N
j=1 x

(s+k)
j

10: s← s+ k, k ← 0
11: end if
12: until a stopping criterion true

It is worth emphasizing that the indices s and k of the
algorithm have an important interpretation. The index s always
represents an iteration at which the synchrony [see (4)] of the
local copies of the decision variables is imposed, cf. step 7,
step 10. The inner loop [cf. steps 2-4] always starts with
synchrony. Thus, k represents the local iteration index within
the inner loop, which is reset every time the synchrony is
imposed, cf. step 7, step 10. Consequently, s+k is simply
the global iteration index of Algorithm 1. The following
Proposition establishes the convergence of Algorithm 1.

Proposition 1. Suppose AS 1, AS 2 hold. Let {x(k)
i }k∈Z+ ,

i ∈ N , be the sequence of local copies of the decision variable
generated by Algorithm 1. Then for γ ∈ (0, 1/L]

1) lim sup
k→∞

(
f
(
x
(k)
i

)
− f(x⋆)

)
≤ ϵ2N2/(2(ℓ− Lr̄2))

2) lim sup
k→∞

∥∇f
(
x
(k)
i

)
∥ ≤

√
Lϵ2N2/(ℓ− Lr̄2)

3) lim sup
k→∞

∥x(k)
i − x⋆∥ ≤

√
Lϵ2N2/(ℓ2 − Lr̄2ℓ)

where L =
∑N

j=1 Lj , ℓ = minj∈N ℓj , r̄ = r/(1 − r), and
x⋆=argminx f(x).

It is not difficult to see that the Proposition holds even if
x
(k)
i is set as x(k) = 1

N

∑N
j=1 x

(k)
j for all k ∈ Z+. Note that

until the termination of the algorithm [cf. step 12], the inner
loop is in either of the following states: 1) it repeats more than
once 2) it repeats only once. Thus, the proof of the Proposition
is simply based on the characterization of the evolution of the

sequence {f
(
x
(s+k+1)
i

)
− f

(
x⋆

)
} when the algorithm is in

either of the states. To this end, we shall require the following
results, the proofs of which are given in the Appendix.

Lemma 1. Let AS 1, AS 2 hold, s ∈ Z+ be any iteration
index at which synchrony is imposed, i ∈ N , and r ∈ (0, 1).
Moreover, suppose the inner loop of Algorithm 1 repeats for
iteration indices k̄ ∈ {s, s + 1, . . . , s + κ}, for some κ ≥ 2.
Then for k ∈ {0, 1, . . . , κ− 1}

f
(
x
(s+k+1)
i

)
− f

(
x⋆

)
≤ q

(
f
(
x
(s+k)
i

)
− f

(
x⋆

))
(7)

where q = (1+γLr̄2−γℓ) is a positive constant.

Lemma 1 characterizes the evolution of the sequence
{f

(
x
(s+k+1)
i

)
− f

(
x⋆

)
} when the algorithm is in states 1.

Consequently, the recursive application of (7), together with
the Jensen’s inequality yields

f
(
x
(s+κ)
i

)
− f

(
x⋆

)
≤ qκ

(
f
(
x
(s)
i

)
− f

(
x⋆

))
. (8)

The evolution of the sequence {f
(
x
(s+k+1)
i

)
− f

(
x⋆

)
} when

the algorithm is in state 2 is established by the following result.

Lemma 2. Let AS 1, AS 2 hold, s ∈ Z+ be any iteration
index at which synchrony is imposed, r ∈ (0, 1), and i ∈ N .
Moreover, suppose the inner loop of Algorithm 1 repeats only
once, where the iteration index is s. Then

f
(
x
(s+1)
i

)
−f

(
x⋆

)
≤

(
1−γℓ

) (
f
(
x
(s)
i

)
− f

(
x⋆

))
+

γϵ2N2

2
.

(9)

The inequality (9) holds even if x(s+1)
i from the inner loop of

Algorithm 1 is set as x
(s+1)
i = 1

N

∑N
j=1 x

(s+1)
j .

Finally, the following Lemma asserts that the algorithm
necessarily switches to state 2 from state 1.

Lemma 3. Let AS 1, AS 2 hold. Moreover, suppose ∀ i ∈
N , r∥h(0)

i ∥ ≥ ϵN , and thus, the algorithm starts at state 1,
where r ∈ (0,

√
ℓ/(
√
L+
√
ℓ). Then ∃ s̄, k̄ ∈ Z+ such that

Algorithm 1 switches to state 2 from state 1, where s̄ is an
iteration index at which the synchrony is imposed and k̄ is a
local iteration index within the inner loop.

Having armed with the above results, we are now ready to
give the proof of Proposition 1.

Proof of Proposition 1. From Lemma 1 and (8), for any con-
secutive sequence of state 1, starting at some global iteration
index n ∈ Z+ and ending at n+ k ∈ Z+, we have

f
(
x
(n+k)
i

)
− f

(
x⋆

)
≤ qk

(
f
(
x
(n)
i

)
− f

(
x⋆

))
(10)

≤ qk
(
f
(
x
(n)
i

)
− f

(
x⋆

))
+

γϵ2N2

2

∑k−1
j=0 q

j . (11)

Similarly, recursively applying (9) in Lemma 2 for any con-
secutive sequence of state 2, starting at some global iteration
index n ∈ Z+ and ending at n + k ∈ Z+, together with
that 1 − γℓ ≤ q, we again have an equivalent form of (11).
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(a) Error Vs IntSync + IndComp (b) Error Vs IntSync

Fig. 1: Comparison of error for different distortion levels (i.e, ϵ). Results are shown for ϵ = 0.01, 0.1, 1, and 10.

Moreover, the algorithm necessarily switches to state 2 from
state 1, cf. Lemma 3. Thus, from (11), ∀ k ∈ Z+, we have

f
(
x
(k)
i

)
−f

(
x⋆

)
≤ qk

(
f
(
x
(0)
i

)
−f

(
x⋆

))
+
γϵ2N2

2

∑k−1
j=0 q

j .

Noting that q < 1, we take the limit as k → ∞ to yield
Part 1. Part 2 follows from Part 1 and [35, eq. 10, § 1.4].
Finally, Part 3 follows from Part 1 and [35, eq. 35, § 1.1].

IV. NUMERICAL RESULTS

Let us first verify the convergence results of Proposition 1.
To this end, we consider problem (1) with quadratic fis, i.e.,
fi(x) = xTBT

i Bix + cT
ix, where BT

i Bi ∈ Sn++, ci ∈ Rn,
and Sn++ is the positive definite cone. The entries of Bi

and ci are generated from a normal distribution. Note that
ℓi and Li are determined by Bi, cf. AS 1. We let N = 4,
n = 10, γ = 1/(2L), and r = 0.03. Only the results
related to Proposition 1-(1) is presented, since those related
to Proposition 1-(2) and (3) behave similarly.

For comparison, we consider two algorithms. The first one
is the classic GD, i.e., Algorithm 1 with ϵ = 0 and r = 0. We
also consider another algorithm which we refer to as inexact-
GD with distributed synchrony (IGDDS), i.e., Algorithm 1
with r = 0 and ∀ i ∈ N , ϵ

(k)
ij = ϵ

(k)
j [cf. (2)]. In this

respect, the synchrony (4) holds for all k ∈ Z+ and we have
lim supk→∞

(
f
(
x
(k)
i

)
− f(x⋆)

)
≤ ϵ2N2/(2ℓ) [35], [36, § 4].

Figure 1(a) shows the error f
(
x(s+k)

)
−f(x⋆) vs global

iteration index s + k for different ϵ, cf. solid lines. Results
are averaged over 1000 initializations x(0), whose entries are
normally distributed. Plots agree with Proposition 1-(1), i.e.,
the smaller the ϵ, the smaller the error of the optimality.
Results with IGDDS are given in non-solid lines. Convergence
rates and the suboptimality obtained by Algorithm 1 and
IGDDS seem almost identical. This is expected because the
convergence rate of Algorithm 1, i.e., (1 − γLr̄2 − γℓ) and
that of IGDDS, i.e., (1 − γℓ) are almost identical when
γLr̄2 ≪ 1−γℓ. This condition is always realizable in practice,
e.g., we have γLr̄2 = 0.0005 and 1 − γℓ = 0.9986 in our
simulation. A similar comparison holds for the suboptimality
as well. Thus, results suggest that Algorithm 1 yields almost
identical results to that of more constrained IGDDS.

Since IGDDS is technically equivalent to Algorithm 1 with
r = 0, error-free communication is needed in every iteration to

yield synchrony (4). However, Algorithm 1 does not require
synchrony in every iteration. Therefore, for a fair compari-
son of Algorithm 1 and IGDDS in terms of communication
overhead, it is instructive to plot the error versus the number
of IntSync steps m, where sm, m ∈ Z+ is the iteration
index of s within Algorithm 1 at which the mth-synchrony is
imposed.

Figure 1(b) shows the error f
(
x(sm)

)
− f(x⋆) vs m with

Algorithm 1, see thick solid lines. Results related to IGDDS
are also plotted, see the non-solid lines. Clearly, there is a shift
of the plots with IGDDS towards the right relative to the plots
with Algorithm 1. Therefore, for all considered ϵ values, the
number of IntSync steps m required to obtain a specified
error with Algorithm 1 is smaller than with IGDDS. Moreover,
if the number of IntSync steps m is fixed, the error with
Algorithm 1 can be on the order of magnitude smaller than
with IGDDS. This is useful in practice, because the cost of
the error-free communication required for IntSync can be
reduced with Algorithm 1 than with IGDDS. The benefits
become greater as ϵ decreases. Finally, we plot results due to
GD, see the thin solid line in Fig. 1(b). Results show that still
the Algorithm 1 can benefit from less expensive IndComp
steps. For example, in 150 IntSync steps, Algorithm 1
manages to yield an error significantly less than that from GD
despite the value of ϵ. Clearly, GD outperforms Algorithm 1
if m is sufficiently large, since there are no inexactnesses.
Thus, the results suggest if there is a choice for less expensive
communication for IndComp, or a choice for allowing some
inexactnesses, one can operate Algorithm 1 in a way there is
a trade-off between the error and IntSync steps (m).

V. CONCLUSION

A gradient-like algorithm with guaranteed convergence has
been developed to minimize a sum of peer objective functions
through an interconnection network with multi-peer broad-
cast and multi-peer accumulation capabilities. Peer coordi-
nation can usually admit communications with bounded er-
rors, however with some infrequent error-free synchronization
epochs, which are dynamically triggered. Our algorithm can
be attractive in many distributed applications, under inexact
communication settings, such as decomposition with dual-
subgradient methods and distributed learning systems with in-
network computing capabilities, among others.
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APPENDIX

A. Derivation of (5)

Suppose AS 1 and AS 2 hold. Moreover, let γ ∈
(0, 1/

∑N
j=i Lj ]. Then by recursively applying (3) followed

by the use of the triangular inequality gives

∥x(k)
i − x

(k)
j ∥ ≤ 2ϵNγk, ∀i, j ∈ N . (12)

From (2) and the gradient Lipshitz continuity of fis, it follows
that

∥∇fj
(
x
(k)
i

)
− h

(k)
ij ∥ ≤ Lj∥x(k)

i − x
(k)
j ∥+ ϵ. (13)

Finally, (5) follows from (13) by noting that ∇f
(
x
(k)
i

)
=∑N

j=1∇fj
(
x
(k)
j

)
, the definition of h

(k)
i , (12), and γ ≤(

1/
∑N

j=i Lj

)
.

B. Proof of Lemma 1

Without loss of generality we may assume s = 0. Now, one
can bound f(x

(k+1)
i ) as follows:

f
(
x
(k+1)
i

)
≤ f

(
x
(k)
i

)
+∇f

(
x
(k)
i

)T(
x
(k+1)
i − x

(k)
i

)
(L/2)∥x(k+1)

i − x
(k)
i ∥

2 (14)

≤ f
(
x
(k)
i

)
−γ∇f

(
x
(k)
i

)T
h
(k)
i +(γ/2)∥h(k)

i ∥
2 (15)

= f
(
x
(k)
i

)
−(γ/2)∥∇f

(
x
(k)
i

)
∥2

(γ/2)∥∇f
(
x
(k)
i

)
− h

(k)
i ∥

2 (16)

≤ f
(
x
(k)
i

)
+

(
γr̄2

2
− γ

2

)
∥∇f

(
x
(k)
i

)
∥2 (17)

≤ f
(
x
(k)
i

)
+ (γLr̄2−γℓ)

(
f
(
x
(k)
i

)
− f

(
x⋆

))
(18)

where r̄ = r/(1 − r). Here (14) follows from the descent
lemma [37, Lemma 5.7], (15) follows from (3) and noting that
γL ≤ 1, (16) follows from simple algebraic identities, (17)
follows from (6), (18) follows from [35, Lemma 3, § 1.4]
and [35, eq. 10, § 1.4] for bounding −∥∇f

(
x
(k)
i

)
∥2 and

∥∇f
(
x
(k)
i

)
∥2, respectively. Now, subtracting f

(
x⋆

)
from the

both sides of (18) yields the final result.

C. Proof of Lemma 2

To begin with, let us bound f(x
(s+1)
i ) as follows:

f
(
x
(s+1)
i

)
≤ f

(
x
(s)
i

)
−(γ/2)∥∇f

(
x
(s)
i

)
∥2

+ (γ/2)∥∇f
(
x
(s)
i

)
− h

(s)
i ∥

2 (19)

≤ f
(
x
(s)
i

)
− γℓ

(
f
(
x
(s)
i

)
− f

(
x⋆

))
+
(
γϵ2N2

)
/2

(20)

where (19) is similar to (16) of the preceding lemma. (20) fol-
lows from [35, Lemma 3, § 1.4] for bounding −∥∇f

(
x
(s)
i

)
∥2

and from that ∥∇f
(
x
(s)
i

)
−h

(s)
i ∥2 ≤ ϵN , since the inner loop

always starts from synchrony, cf. (5). Subtracting f
(
x⋆

)
from

both sides yields (9). The latter part of the lemma is immediate
from the Jensen’s inequality.

D. Proof of Lemma 3

Suppose the algorithm remains in state 1 4 without switching
to state 2. For clarity, let s ∈ Z+ and k ∈ Z+ denote
arbitrary iteration indices at which the synchrony is imposed
and corresponding local iteration index within the inner loop,
respectively. Thus, from Lemma 1 and (8), we have

f
(
x
(s+k)
i

)
− f

(
x⋆

)
≤ qs+k

(
f
(
x
(0)
i

)
− f

(
x⋆

))
. (21)

Consequently, bounding f
(
x
(s+k)
i

)
− f

(
x⋆

)
and f

(
x
(0)
i

)
−

f
(
x⋆

)
using [35, Lemma 3, § 1.4] and [35, eq. 10 § 1.4]

respectively, we have

∥∇f
(
x
(s+k)
i

)
∥2 ≤ (L/ℓ)qs+k∥∇f

(
x
(0)
i

)
∥2. (22)

Moreover, for r ∈ (0,
√
ℓ/(
√
L+
√
ℓ)), we have q ∈ (0, 1).

Thus, ∃ s+ k ∈ Z+ such that guarantees 5

∥∇f
(
x
(s+k)
i

)
∥ < ϵN/r̄. (23)

It holds that

∥h(s+k)
i ∥ ≤ ∥∇f

(
x
(s+k)
i

)
∥+∥∇f

(
x
(s+k)
i

)
− h

(s+k)
i ∥ (24)

< ϵN/r̄ + 2ϵN
(
k + 1/2

)
(25)

< 2ϵN(k + 1/2)
(
1/r̄ + 1

)
= 2ϵN(k+1/2)/r (26)

where (24) follows from triangular inequality, (25) follows
from (23) and (5).

The inequality (26) is the inner loop exit criterion [cf. step 4]
which transfers the control of the algorithm to IntSync at
steps 6-7 of the algorithm. From (8) it follows that the inequal-
ity (21) holds even after the synchrony at IntSync. Thus,
by following arguments identical to that of (22) - (26), we
conclude that the control of the algorithm is next transferred
to IntSync at steps 9-10. That is, the previous inner loop has
been repeated only once, which is a contradiction. Therefore,
the algorithm must switch to state 2.

E. Analysis with a General Peer-to-Peer Setting

In § II and § III, we focused on a network that can be mod-
eled using a fully connected graph. However, the mathematical
derivations can be extended to a more generalized peer-to-peer
network that is modeled using a connected graph. Therefore,
communication need not be coordinated by a central controller
like in a federated setting. In the sequel, the main points of
the derivations and related results are discussed.

Let us consider an arbitrary graph G(N ,L), where N =
{1, 2, . . . , N} represents the set of subsystems (SSs) of prob-
lem (1). Moreover, L represents a set of edges between
SSs, where an edge is given by a pair (i, j), i, j ∈ N .
The graph is considered to be undirected. In other words,
(i, j) ∈ L ⇐⇒ (j, i) ∈ L. Communication from SS j to
i is allowed if and only if there is a link (i, j) between the
two nodes. We denote by Ni = {j | (i, j) ∈ L}, the set of

4More generally, the algorithm can be in a consecutive sequence of inner
loops that are of state 1.

5To be precise s+ k ≥
⌈

ln(ϵ2N2L∥∇f
(
x
(0)
i

)
∥2)−ln(r̄2ℓ)

ln q

⌉
, where ⌈.⌉ is

the ceiling function.
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neighbours of the SS i. Furthermore, we denote by T (N , L̄),
a spanning tree of the graph G where L̄ denotes the set of edges
in T . We also define Ti =

{
j | (i, j) ∈ L̄

}
, the neighbors of

the SS i in the spanning tree.
Now, we note that the gradient measurement model in (2)

is going to be modified as follows in the general setting:

h
(k)
ij =

{
∇fj

(
x
(k)
j

)
+ ϵ

(k)
ij if (i, j) ∈ L

0 otherwise.
(27)

Consequently, it is immediate that∥∥∥h(k)
ij −∇fj

(
x
(k)
j

)∥∥∥ =


∥∥∥ϵ(k)ij

∥∥∥ if (i, j) ∈ L∥∥∥∇fj(x(k)
j

)∥∥∥ otherwise.
(28)

It is worth highlighting that the generalized setting requires
an additional assumption unlike the fully connected setting
considered in § II and § III, which we will outline next.

AS 3. The gradients ∇fis of the objective functions fi, i ∈ N
are bounded, i.e., ∥∇fi(x)∥ ≤ ζ for some ζ > 0 for all x, i.

Hence, from AS 2 and AS 3, together with (28), it is easily
verified that ∥∥∥h(k)

ij −∇fj
(
x
(k)
j

)∥∥∥ ≤ τ (29)

where τ = max
(
ϵ, ζ

)
. Thus, the gradient measurement h(k)

ij

obeys the following remark:

Remark 1. ∀ i, j ∈ N , s.t. i ̸= j, gradient measurement
h
(k)
ij ∈ Rn received by i-th SS from j-th SS at k-th iteration

is given by
h
(k)
ij = ∇fj

(
x
(k)
j

)
+ τ

(k)
ij (30)

where τ
(k)
ij ∈ Rn is a error such that ||τ (k)

ij || ≤ τ with || · ||
denoting the Euclidean norm.

Note that Remark 1 play the role of AS 2.
Let us next outline the modified version of Algorithm 1.

Algorithm 2 Inexact GD with IndComp−IntSync over a
General Graph

Input: x
(0)
j = x

(0)
i ∀ i, j ∈ N , τ ≥ 0, r ∈ (0,

√
ℓ/(
√
L +√

ℓ)), s = 0, k = 0
1: repeat
2: repeat
3: ∀ i ∈ N , compute x

(s+k+1)
i from (3), k ← k + 1

4: until ∃ i ∈ N , k − 1 > r∥h(s+k−1)
i ∥/(2τN)− 1/2

5: if k ̸= 1 then
6: ∀ i ∈ N , x(s+k−1)

i ← 1
N

∑N
j=1 x

(s+k−1)
j ▷

performed through T (G, L̄).
7: s← s+ k − 1, k ← 0
8: else
9: ∀ i ∈ N , x(s+k)

i ← 1
N

∑N
j=1 x

(s+k)
j ▷ performed

through T (G, L̄).
10: s← s+ k, k ← 0
11: end if
12: until a stopping criterion true

Now, one can easily see that an identical result to Proposition 1
holds even in the general setting if AS 2 is replaced by

Remark 1 above. More specifically, we have the following
result:

Proposition 2. Suppose AS 1, Remark 1 hold. Let
{x(k)

i }k∈Z+ , i ∈ N , be the sequence of local copies of
the decision variable generated by Algorithm 2. Then for
γ ∈ (0, 1/L]

1) lim sup
k→∞

(
f
(
x
(k)
i

)
− f(x⋆)

)
≤ τ2N2/(2(ℓ− Lr̄2))

2) lim sup
k→∞

∥∇f
(
x
(k)
i

)
∥ ≤

√
Lτ2N2/(ℓ− Lr̄2)

3) lim sup
k→∞

∥x(k)
i − x⋆∥ ≤

√
Lτ2N2/(ℓ2 − Lr̄2ℓ)

where L =
∑N

j=1 Lj , ℓ = minj∈N ℓj , r̄ = r/(1 − r), and
x⋆=argminx f(x).
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[5] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik,
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