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Abstract—The need of fast distributed solvers for optimization
problems in networked systems has motivated the recent devel-
opment of the Fast-Lipschitz optimization framework. In such
an optimization, problems satisfying certain qualifying conditions,
such as monotonicity of the objective function and contractivity
of the constraints, have a unique optimal solution obtained via
fast distributed algorithms that compute the fixed point of the
constraints. This paper extends the set of problems for which
the Fast-Lipschitz framework applies. Existing assumptions on
the problem form are relaxed and new and generalized qualifying
conditions are established by novel results based on Lagrangian
duality. It is shown for which cases of more constraints than
decision variables, and less constraints than decision variables
Fast-Lipschitz optimization applies. New results are obtained by
imposing non strict monotonicity of the objective functions. The
extended Fast-Lipschitz framework is illustrated by a number
of examples, including network optimization and optimal control
problems.

Index Terms—TFast-Lipschitz optimization, Lagrangian duality.

I. INTRODUCTION

AST-Lipschitz optimization is a recently proposed class

or problems where the special structure ensures that the
optimal point is the fixed point of the constraints.' These prob-
lems can therefore be solved through simple and decentralized
algorithms, making the framework an interesting alternative for
distributed applications over networks. The special structure of
Fast-Lipschitz problems makes them useful also in centralized
applications, where it is guaranteed that the solutions can be
obtained through simple system of equations that do not use the
traditional Lagrangian approach.

In a general networked optimization problem, the network
nodes or agents must coordinate their actions to optimize a
network-wide objective function. When information such as
nodes’ objectives, constraints and decision variables are dis-
tributed among the nodes and physically scattered across the
network, or if the amount of information is too large to collect
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'We give a brief technical summary of Fast-Lipschitz optimization in
Section II.

centrally, it can be impractical or even impossible to centrally
compute the solution. For example, collecting information in
one place might be too expensive if the network has limited
communication resources, or it may be too slow if the solution
is needed at the local nodes in real time. In these situations, fast
distributed solution algorithms must be used.

Distributed optimization has a long history, and much of the
recent developments build upon the work of Tsitsiklis [2], [3].
Several approaches exist for solving these problems, such as
primal and dual decomposition methods. In these methods, the
primal or the dual problem is decomposed into local subprob-
lems solved at the nodes. The subproblems are coordinated
through a centralized master problem, which is usually solved by
gradient or subgradient methods [4]. These methods have found
many applications in network utility maximization, e.g., [5]-
[7]. Due to the slow convergence of subgradient algorithms,
recent works have explored higher order methods. For example,
[8] replaces the subgradient step with a Newton-like step. An-
other decomposition approach which is faster and more robust
than the standard decomposition methods is the alternating
direction method of multipliers (ADMM). The method has
recently attracted a substantial interest, especially for problems
with large data sets [9]-[13].

Although the decomposition methods mentioned above dis-
tribute the computational workload over the network nodes, the
subproblems must still be coordinated among the nodes. For
example, dual decomposition based methods must update dual
variables in a central master problem. This requires the network
to iteratively 1) transfer information form all nodes to some
central “master” node; 2) centrally update the dual variables;
3) broadcast the updated dual variables to all nodes of the
network and back to 1) until convergence.

To avoid the centralized master node, peer-to-peer or multi-
agent methods have recently been proposed to coordinate the
subproblem through local neighbor interactions based on con-
sensus algorithms, e.g., [14]-[18]. In these algorithms, nodes
update their decision variables as convex combinations of the
decision variables of their neighbors without a centralized
master. In [19], the consensus algorithm has been combined
with gradient descent to solve an unconstrained optimization
problem where the objective is a sum of local, convex functions.
The work is extended in [20] and [21], which investigate
constraints and randomness. While the previous papers solve
the primal problem, [22]-[24] use consensus-based algorithms
for the dual problem. Higher order methods are considered also
for peer-to-peer optimization, e.g., [25] solves an unconstrained
primal problem, whereas [26] solves a linearly constrained dual
problem, both by approximating Newton’s algorithm through
consensus.

Consensus based methods have many benefits, such as re-
silience to node failures and changing network topology. How-
ever, since every round of consensus requires message passings,

0018-9286 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



862

also these methods may suffer from communication overheads.
A recent study of the tradeoff between communication and local
computation can be found in [27]. The communication over-
head is a problem especially in large scale distributed networks
or wireless sensor networks, where the energy expenditure for
communication can be orders of magnitude larger than the
energy for computation [28].

The methods discussed thus far assume convex problems.
There are other classes of algorithms that do not rely neces-
sarily on convexity, but on other structural properties. Three
such classes are abstract optimization [29], which generalizes
linear optimization, monotonic optimization [30]-[32], where
the monotonicity of the objective function is used to itera-
tively refine a solution within bounds of the feasible region,
and Interference Function optimization [33]-[37], which is the
fundamental framework to solve radio power control problems
over wireless networks. Given the importance of Interference
Function optimization as a precursor of Fast Lipschitz opti-
mization, and considering that we will give some application
examples later on in this paper, we give below some technical
detail on such an optimization framework.

In Interference Function optimization, typical radio power
control problems are solved in a simple distributed (as in
decentralized) way. In such an optimization approach, it is
assumed that the nodes of a wireless network transmit signals of
a certain level of radio power, say node ¢ transmits with power
p;. The signal is received at the intended receiver corrupted
by multiplicative wireless channel attenuations and additive
interference by other transmitter nodes. The level of power
that the transmit power of node i has to overcome at the
receiver in order to get the signal decoded is usually denoted
by Z;(p), the interference function of transmitter i [36], where
P = [p1,p2,...,pn]T is the vector of all transmit radio powers
of the n transmitters in the wireless network. The goal of the
basic power control problem is to minimize the radio powers
pi, while overcoming the interference at each receiver, i.e.,

min p
P
st pi>Ti(p) Vi (1)

Note that the problem above is a vector optimization, where
the minimization is carried out with respect to the non-negative
orthant (see Section II-B for details). Roughly speaking, the
minimization of problem (1) makes all the components of p
become small simultaneously. The solution of problem (1) is
a particularly successful instance of distributed optimization.
Affine versions of Z;(p) are the simplest and best studied
type of interference function, but in theory one can consider
functions Z(p) of any form. The first distributed algorithm to
solve such a problem was proposed in [33], and improved in
[34] and [35]. The algorithm was later generalized to the Inter-
ference Function framework by Yates [36]. In this framework,
a function Z(p) is called standard if, for all p > 0, it fulfils

e Monotonicity: If p > p’, then Z(p) > Z(p'),

o Scalability: For all « > 1,aZ(p) > Z(ap).
When problem (1) above is feasible, and the functions Z;(p)
are standard, the unique optimal solution is given by the fixed
point of the iteration

k41

pitt = T;(p") )
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or pF*l = Z(p*) in vector form. Here, p¥ is the power of

transmitter i at time k and p* = [p¥,ph, ..., me. The compu-
tation of the optimal solution by these iterations is much sim-
pler than using the classical parallelization and decomposition
methods. This is because there is no longer a need to centrally
collect, compute and redistribute the coupling variables of the
problem since Ii(pk) can be know locally at node ¢ [36]. Even
in a centralized setting, iteration (2) is simpler than traditional
Lagrangian methods, since no dual variables need to be stored
and manipulated. The iterations require only that every node
successively updates its transmit power by using local knowl-
edge of other nodes’ current decision variables (radio powers).
Another advantage is that the algorithm converges even though
such a knowledge is delayed, i.e., when the decision variables
p;? of other nodes come with some delay at node ¢ [38].

Extensions of the Interference Function framework have
been proposed in [39], where optimization problems whose
interference functions are not standard by Yates’ definition are
investigated. Instead, they introduce Type-II standard functions,
which for all p > 0 fulfill

o Type-II monotonicity: If p < p’, then Z(p) > Z(p’).

* Dype-1I scalability: Yoo > 1, Z(ap) > (1/a)Z(p).

These functions are shown to have the same fixed point proper-
ties as Yates’ standard functions, i.e., problem (1) with Type-II
standard constraints can be solved through repeated iterations
of the constraints (2).

Fast-Lipschitz optimization is a natural generalization of the
Interference Function approach on how to solve distributed
optimization problems over networks by using fixed point
iterations similar to (2), but when the constraints are neither
standard nor Type-II standard [28]. It also considers more
general objective functions gg(p) for problem (1). The frame-
work considers a class of possibly non-convex and multi-
objective problems with monotonic objective functions. These
problems have unique Pareto optimal solutions, well defined by
a contractive system of equations formed by the problem con-
straints. Therefore, Fast-Lipschitz problems are solved without
having to introduce Lagrangian functions and dual variables
or consensus based iterations. This makes the framework par-
ticularly well suited when highly decentralized solutions, with
few coordination messages, are required. This is important in
typical areas such as wireless sensor networks and in multi-
agent systems.

In this paper, we substantially extend the class of problems
that are currently solvable with the Fast-Lipschitz framework.
In particular, we 1) introduce a new qualifying condition that
unifies and extends the existing conditions of [28], 2) consider
problems with more, or less, constraints than variables, which
was not considered in [28], and 3) study objective functions that
are not strictly monotonic, which was not considered in [28].

The remainder of this paper is organized as follows. In
Section II we clarify our notation and give a brief overview
of the current state of Fast-Lipschitz optimization. Section III
presents a new, general qualifying condition for Fast-Lipschitz
optimization. The new qualifying condition is proved (using an
approach different from [28]) in Section III-C. In Section IV
we give special cases of the general qualifying condition that
have much less analytical and computational complexity, and
highlight the connection of these special cases to existing
qualifying conditions and related work. Furthermore, Section V
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relaxes some of the requirements of Fast-Lipschitz form by
considering problems with more constraints than variables in
Section V-A, and problems with less constraints than variables
in Section V-B, while Section V-C refines some of the re-
quirements on the objective function. Section VI-A features an
example that illustrates some of the new results of this paper. In
Section VI-C the new results developed in this paper are applied
to a family of optimal control problems, where the problem
structure is utilized to determine the optimal solution without
computations. Finally, the paper is concluded in Section VII.

II. PRELIMINARIES

This section clarifies notation and recalls Fast-Lipschitz opti-
mization to provide the essential background definitions for the
core contribution of this paper.

A. Notation

Vectors and matrices are denoted by bold lower and upper
case letters, respectively. The components of a vector x are
denoted x; or [x];. Similarly, the elements of the matrix A
are denoted A;; or [A];;. The transpose of a vector or matrix is
denoted -”'. T and 1 denote the identity matrix and the vector of
ones. A vector or matrix where all elements are zero is denoted
by 0.

The gradient Vf(x) is the transpose of the Jacobian matrix,
ie., [VE(x)];; = 0f;(x)/0x;, whereas V,f(x) denotes the ith
row of Vf(x). Note that Vf(x)* = (Vf(x))¥, which is not to
be confused with the kth derivative. The spectral radius of A

is denoted p(A). Vector norms are denoted ||| - ||| and matrix
norms are denoted || - ||. Unless specified ||| - ||| and || - || denote
arbitrary norms. [[|A|[| = max; > _; [A;;] is the norm induced

by the /., vector norm.
All inequalities are intended element-wise, i.e., they have
nothing to do with positive definiteness.

B. Vector Optimization and Pareto Optimality

In this paper we are concerned with maximization of vector
valued objective functions fy(x) € R™. A vector optimization
problem involves a proper cone K (see, e.g., [40, Section 4.7]).
In this paper we focus on the case when K is non-negative
orthant

K=RP2{y:y; >0, Vi=1,...,m}
This maximization of a vector is formally expressed as
maximize (with respect to RY") fo(x).? 3)

The goal of the maximization (3) is to find the decision vector
x such that the components of fy(x) are as big as possible with
respect to the cone R'. In particular, when comparing two
vectors x and y with respect to the cone R, we say x ERT y
if x -y €RY and x jRT y if y —x € R’. Note that this
corresponds exactly to the component-wise inequalities (y > x

2In this paper we only consider optimization with respect to the cone R"".
Therefore, for notational simplicity we simply write max fo(x), and the vector
optimization (3) should be understood whenever fo (x) is vector valued.
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and y < x), and for this reason we will use > rather than
R throughout the rest of the paper. Unlike scalars, where it
must hold that either a > b, or a < b, two vectors might not be
comparable. For example, for x = [1 2|7 and y = [3 1]T, we
have x ? yandy # x.

Based on the discussion above, x; is preferable to x5 in
problem (3) if fo(x1) > fo(x2). A feasible decision variable
X is said to be Pareto optimal if there is no other feasible
vector x such that fy(x) > fy(x). A problem can have several
Pareto optimal points—in this case each Pareto optimal point is
incomparable to any other Pareto optimal points, but preferable
to any point that is not Pareto optimal. If a problem only has
one Pareto optimal point x*, then x* is the unambiguously best
choice among the decision vectors.

Scalarization is a useful technique for generating Pareto
optimal points. Scalarization is performed by picking a weight
vector g in the interior of R", i.e., u > 0, and solving the
scalar optimization problem

max pu” fo(x) = Z pi [fo ()]; - )

Any point x that is optimal in problem (4) is Pareto optimal
in (3). Although scalarization does not necessarily generate all
Pareto optimal points, one can show that if a point x* is optimal
for all scalarization vectors p > 0, then x* is the unique Pareto
optimal point.

C. Fast-Lipschitz Optimization

We will now give a formal definition of Fast-Lipschitz prob-
lems. For a thorough discussion of Fast-Lipschitz properties we
refer the reader to the above mentioned paper.

Definition 1: A problem is said to be on Fast-Lipschitz form
if it can be written

max fo(x)
s.it. x; < fl(X)

r; = fi(x)

Vie A
VieB 5)

where

e fy: R™ — R™ is a differentiable scalar (m = 1) or vector
valued (m > 2) function,

* A and B are complementary subsets of {1,...,n},

e f; : R™ — R are differentiable functions.

We will refer to problem (5) as our main problem. From
the individual constraint functions we form the vector valued
function f : R® — R” as f(x) = [f1(x) --- fau(x)]7.

Remark 2: The characteristic feature of Fast-Lipschitz form
is a pairing such that each variable x; is associated to one
constraint f;(x). The form x < f(x) is general, since any
constraint on canonical form, g(x) < 0, can be written z <
x — yg(x) for some positive constant .

Definition 3: For the rest of the paper, we will restrict our
attention to a bounding box D = {x € R"|la < x < b}. We
assume D contains all candidates for optimality and that f maps
Dinto D, f : D — D. This box arise naturally in practice, since
any real-world quantity or decision must be bounded.

Definition 4: A problem is said to be Fast-Lipschitz when
it can be written in Fast-Lipschitz form and admits a unique
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Pareto optimal solution x*, defined as the unique solution to
the system of equations

x* = f(x*). (6)

A problem written in Fast-Lipschitz form is not necessarily
Fast-Lipschitz. The following qualifying conditions guarantee
that a problem in Fast-Lipschitz form is Fast-Lipschitz.

Old Qualifying Conditions: For all x in D, fy(x) and f(x)
should be everywhere differentiable and fulfill at least one of
the following cases (e.g., (0) and (i), or (0) and (ii)):

(0) Viy(x) >0 (7a)
AND (i.a) Vf(x) >0 (7b)
(ib)  [[IVE)I <1 (70)
OR (ii.a) fy(x) = c1”x, withe > 0 (7d)
(ii.b) Vf(x) <0 (7e)
(or more generally, Vf(x)? > 0)
(iic) VIl <1 (79
OR (iii.a) fo(x) e R (72)
. 5
(iib) VIl < 5%
where 52 min; mingep V;fy(x) (7h)

A = max; maxxep V;fo(x).

Theorem 5 ([28, Theorem 3.3]): A problem in Fast-Lipschitz
form that fulfills any pair of the Old Qualifying Conditions is
Fast-Lipschitz, i.e., it has a unique Pareto optimal point given
by x* = f(x*).

Once it is known that a problem is Fast-Lipschitz, computing
the solution becomes a matter of solving the system of (6),
which in general is much easier than solving an optimization
problem using Lagrangian multipliers. This is particularly evi-
dent when f(x) is contractive on D, a property assured by the
qualifying conditions. In this case, the iterations x**1 := f(x*)
converge geometrically to the optimal point x*, starting from
any initial point x° € D.

Fast-Lipschitz optimization problems need not be convex,
but convex problems that fulfill the qualifying conditions can
be rewritten and solved with the Fast-Lipschitz framework. For
example, this is true for any problem where the constraints are
standard:

Proposition 6 ([41, Theorem 4.2]): If problem (1) is feasible,
and the constraints standard, then the problem is Fast-Lipschitz.

This concludes the preliminary part of the paper. We are now
ready to present the core contributions of this paper.

III. A GENERAL QUALIFYING CONDITION

This section presents a new qualifying condition, that gen-
eralizes and unifies the conditions of Section II-C. The new
condition is introduced in Section III-A, together Theorem 7,
which formally states the role of the condition. Section III-B
shows that problems fulfilling the general qualifying condition
of Section III-A have contractive constraints. These results
enable finding the optimal point through fixed point iterations,
and they also function as a preliminary result to the proof of
Theorem 7 in Section III-C.

From this point and onwards we will do small change of
terminology. We will call each set of related conditions a
“Qualifying Condition,” rather than a “case” of the qualifying
conditions. We will still use the notion of “case” when referring
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to the Old Qualifying Conditions (7). For example, “case (i)”
will refer to the groups (7a)—(7c) of the old qualifying condi-
tions, while “case (ii)” refers to (7a) and (7d)—(7f).

A. New Qualifying Conditions

Consider once again the optimization problem (5) on Fast-
Lipschitz form, surrounded by the bounding box D. Just as in
Section II-C, the qualifying conditions presented in this section
are used to ensure that a problem in Fast-Lipschitz form also is
Fast-Lipschitz. In the upcoming qualifying conditions, we will
use the ratio

AL min; [Vfo(x)]ij ' ®

Jj  max; [Vfo (X)}ij

q(x)

The value of ¢(x) is the smallest ratio of any two elements
from the same column of Vfj(x). When Vfy(x) > 0, q(x) is
always non-negative. Moreover, ¢(x) < 1 by construction, with
equality if and only if all rows of Vfj(x) are identical. In fact,
q(x) can be seen as a penalty for when the objective function
gradient points in a different direction than the vector 1.

We are now ready to state the new qualifying conditions.
We will begin with the most general form of the qualifying
conditions. Special cases of this condition will be discussed in
Section I'V.

General Qualifying Condition
(GQC.a) Vfy(x) > 0 with non-zero rows
(GQC.b) [[VE(x)l <1

There exists a k € {1,2,...

} U oo such that

GQC | (GQC.c) When k < oo, then
VE(x)* >0
(GQC.d) When k > 1, then
== veear]] | < aeo

In the condition above, we allow the parameter & to be any
positive integer, or infinity. Each value of k corresponds to a
different case in the proof of Theorem 7 below. In the extremes
k = oo and k = 1, there is no need to fulfill conditions (GQC.c)
and (GQC.d) respectively. Both these cases will be discussed
further in Section IV.

We now give Theorem 7, which plays a role analogous to that
of Theorem 5 in Section II-C.

Theorem 7: Assume problem (5) is feasible, and that GQC
holds for every x € D. Then, the problem is Fast-Lipschitz, i.e.,
the unique Pareto optimal solution is given by x* = f(x*).

Proof: The theorem is proved in Section III-C. |

Remark 8: It should be emphasized that all qualifying con-
ditions of this paper are only sufficient, i.e., a problem that
does not fulfil the qualifying conditions can still be Fast-
Lipschitz. For example, by considering certain transformations
of the constraint functions, it is possible to relax condition the
condition (GQC.d) that contains the norm ||| - |||~.. One can
also relax certain requirements on the Fast-Lipschitz form of
problem (5), (e.g., by considering problems with more variables
than constraints or problem where the objective function only
depends on a subset of the variables (see Section V).
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B. Contraction Properties of Fast-Lipschitz Problems

In this subsection we briefly discuss the contractiveness of
f(x). This is important since it allows a Fast-Lipschitz opti-
mization problem to be solved through fixed point methods.
These results will also be used in the proof of Theorem 7 in
the next subsection.

Once optimization problem (5) is shown to be Fast-Lipschitz,
solving it becomes a matter of finding the point x* = f(x*).
In a centralized setting, one can use any suitable method for
solving such a system of equations, e.g., Newton like methods.
However, if f(x) is contractive, the simplest way to solve x* =
f(x*) is torepeatedly evaluate f(x). This method works both in a
centralized and a distributed setting. Compared to other distrib-
uted methods, it has the benefit of being totally decentralized,
i.e., there is no master problem or coordinating node. Further-
more, the iterations converge even when some of the nodes, due
to dropped or delayed packets, only have access to outdated in-
formation of the neighbors’ decisions, see [28, Proposition 3.6]
or [38] for details. We show below that if the general qualifying
condition GQC holds, then f(x) is contractive.

Proposition 9 ([38, Sec. 3.1]): Let f be a mapping from a
closed subset of R™ into itself, £: X — X If there is a norm ||.||
and a scalar o < 1 such that ||f(x) — f(y)|| < a||x — y]| for all
x,y € X, then f(x) is a contraction mapping. As a result:

o x* = f(x*) is the unique fixed point of f in X'.

* For every initial point x € X, the sequence x¥*! :=

f(x*) converges linearly to x*.

Since we know f : D — D, f is a contraction mapping if we
can find a vector norm such that ||f(x) — f(y)|| < al|x — ¥y
forall x,y € D.

Lemma 10: If the general qualifying condition GQC holds,
f(x) is contractive.

Proof: Parameterize the line between x,y € D by u(t) =
tx+(1—1)y,0<t<1,andletg(t) =f(u(t)). Then, dg(t)/dt =
Vf(u(t))? (x —y), wherefore

£ — £() =g(1) —g(0) = [ Earo

_ /vf ()" dt (x —y) 2 A(x—y)
0

where each element in A is the integral of the corresponding

zeD zeD

element in Vf(u(t)). Let || - ||, be the matrix norm that sat-
isfies condition (GQC.b), and define || - ||, such that |||A]][, £
I|AT|||4. It is straight-forward to show that || - ||, inherits the
matrix norm properties of || - ||,. We can now bound
1 1
1Al = / VE (u(t) " de]|| < / [|ve )|, ae
0 b 0
1
< [ max 198", dt = max || V)7,
0

A

max [[[VE(z)[[, = e

The first inequality above is the triangle inequality. The second
inequality holds since D is convex whereby u(t) € D for all ¢.

The maximum exists since D is compact, and o < 1 by
(GQC.b).

From [42, Theorem 5.6.26], we know that there exists an
induced matrix norm |||.|||y such that |||[M]]|y < |[|M]|, for
every matrix M € R™*". Let ||.||, be the vector norm that in-
duces |||.|||v. By the properties of induced matrix norms we get

1£G0) = £, = A = y)ll, < [lAllly [[x =¥,
< IAllla 1 =3)ll, < allx=y)ll,

as desired. Since f(x) : D — D, f(x) is a contraction mapping.
This concludes the proof. |
We are now ready for the main proof of the paper.

C. Proof of Theorem 7

In this section we prove Theorem 7, which is one of the main
contributions of this paper. The proof will be given as a series
of lemmas as outlined in the following.

Proof of Theorem 7: Consider optimization problem (5).
When the general qualifying condition GQC holds for all x €
D, then the following steps ensure that x* = f(x*) is the unique
optimal solution.

1) First, we restrict ourselves to optimization problems
on Fast-Lipschitz form with only inequality constraints,
without loss of generality by Lemma 11 below.

2) The inequality-only constrained optimization problem al-
lows us to show that all feasible points of the optimization
problem are regular [43], wherefore any optimal point X
must fulfill the KKT-conditions, see Lemma 13 below.

3) Any point that fulfills the KKT-conditions must be a fixed
point of f(x), see Lemma 15.

4) Finally, we show that there exists a unique fixed point
x* = f(x*) by Proposition 9 and Lemma 10. Therefore,
x* is the only point fulfilling the KKT-conditions and x*
must be the optimum. |

The first lemma allows us to focus on problems consisting
only of inequality constraints. This is an important step that
permits us to use the KKT conditions (see, e.g., [38, 3.1.1])
to establish the existence an uniqueness of optimal solutions.

Lemma 11: If the inequality-only constrained optimization
problem

max fy(x)
st @ < filx) Vie{l,...,n} )
is Fast-Lipschitz, then so is any problem

max fo(x)
s.it. x; < fl(X)
z; = fi(x)

obtained by switching any number of the inequalities for
equalities.

Proof: Let Fgy and Fj be the feasible regions of problem
(9) and problem (10) respectively. The point x* = f(x*) is
feasible in both problems and by definition uniquely optimal
for problem (9) since it is Fast-Lipschitz. Suppose, contrary to
the lemma, that problem (10) is not Fast-Lipschitz. Then there
exists some feasible point x € Fjo C Fg such that fo(x) >
fo(x*) which contradicts the unique optimality of x* in
problem (9). |

VieA AUB={l,...n}

VieB, ANB=go (10)
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With Lemma 11 in mind, we develop the rest of the proof
of Theorem 7 by focusing on the inequality-only constrained
problem (9) instead of main problem (5). The inequality-only
problem on canonical form is

—fo(x)
gi(x) =T —

min
s.t. filx) <0 Vi (11)

Definition 12: In problem (11), a point x is regular if the gra-
dients of all active constraints at x form a linearly independent
set (see [43]).

Lemma 13: If problem (9) fulfills the general qualifying
condition GQC, then every point x € D in problem (11) is
regular.

Proof: The gradients of the individual constraints g;(x)
are the columns of Vg(x)=1I— Vf(x). Since condition
(GQC.b) implies p(VE(x)) < |||VE(x)]|| < 1, the eigenvalues
of Vg(x) lie in a ball of radius p(Vf(x)) < 1, centered at 1.
Hence, no eigenvalue of Vg(x) is zero and Vg(x) is invertible,
wherefore the constraint gradients Vg;(x) (the columns of

Vg(x)) form a linearly independent set. |
We now scalarize problem (11), by considering
min  —p’ fo(x)
st gi(x)=mx; — fi(x) <0 Vi (12)

for a positive vector p € R™ (see Section II-B). Since an
arbitrary scaling of p does not change the solution of the
problem, we restrict ourselves to p fulfilling ), pp = 1.

Introduce dual variables A € R", and form the Lagrangian
function L(x,\) = —pu”fy(x) + AT (x — f(x)). Since every
x € D in problem (12) is regular (Lemma 13), any pair (%, A)
of locally optimal variables must satisfy the KKT-conditions
(see e.g., [38, 3.1.1]). In particular, X must be a minimizer of
L(x, \), which requires

Vi L(%,A) = =V (X)p + X — VE(X)A = (13)
and complementarity must hold, i.e.,
Xi (& — fi(%) =0 Vi. (14)

We will soon show that GQC implies X > 0. To this end, the
following remark is useful.

Remark 14: Let A = Ac.Ifc > 0and A > 0 with non-zero
rows, then A > 0.

The statement above is trivial, but we give it as Remark 14
since we will refer to it several times throughout the paper. Note
that A > 0 and ¢ > 0 is not sufficient for Ac > 0, this is the
reason that condition (GQC.a) requires non-zero rows.

The following lemma is the main part of the proof of
Theorem 7, and establishes that the optimal dual variable is
strictly positive.

Lemma 15: Whenever GQC holds, any pair (x
D satisfying (13) must have A>0.

Proof: For notational convenience, let us fix one x € D,
which we denote x, and introduce

,A) with x €

A2 VE%) eR™™ and c2 Vi(X)peR™  (15)

Note that condition (GQC.a) and Remark 14 give ¢ > 0 for
every p > 0.
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With the new notation, (13) can be written as

—cH+A—AX=0,0orA=(I—-A)lc (16)
whenever I—- A =I—Vf(x) is invertible, which is true for all

x €D (proof of Lemma 13). The expansion of this inverse gives

A=I+A+A%+. e (17a)
=T+ AR H AT I H A+ AR e
=Y (AN @T+A+-+ AR e (17b)
=0 . "
N—_—— right vector

“left matrix”

The first step is showing that the “left matrix™ above is non-
negative with non-zero rows. If k£ — oo, the “right vector”
becomes identical to the right hand side of (17a). The “left
matrix” must therefore equals identity,> which is non-negative
with non-zero rows. For all other k£ < oo, the “left matrix”
is ensured non-negative by condition (GQC.c) (with non-zero
rows guaranteed by the first term A° = I).

When the “left matrix” is non-negative with non-zero rows, a
sufficient condition for A > 0 is that the right vector is positive
(Remark 14), i.e.,

I+A+ - +A*1|c>0 = —-Be<e. (18)

2B

When k£ = 1, then B = 0 and (18) holds trivially, since ¢ > 0.
For k > 1, let ¢pmin and ¢pax be the minimum and maximum
elements of ¢ and consider row 7 of inequality (18). We can
now bound the right side by cyin < ¢; and the left side by

[=Bcli| = > Bije;| <> [Bille]
i=1 =1

< max Y [Bijlemax = [[[Blll cmax- (19
7 =
Therefore, (18) holds if |||B|||ccCmax < Cmin, OF
Cmin
Bl < — (20)

Let V,;fy(%) be the ith row of Vfy(x) and define

a(p) = argmin V£ (%), and b(p) = argmax V;f (%) .
Vifo (%) Vifo(X)

Let dj, (i) = ar(p)/bi () and express the components of a as
ap(p) = di(p)br(p). Since ¢ = Vi (x)u, we have

) Vi (x Zak W) = de(ﬂ)bk )
%

Cmin = a

and

Cmax = b(p)Vip(x) =

> bi(w) e

k

3 A different way to see this is by noting that limy,_, . A* = 0 since p(|A)1
by condition (GQC.b). The “left matrix” therefore evaluates to Zle o,
where only the term 00 = T gives a contribution.
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The fraction in (20) can therefore be bounded by

Cmin _ Zk ar(p) - pe _ Zk di(p) - b (pe) - pix
Cmax  D_p br(p) - >k b (1) -
o 2ok Qmin(B) - i (R2) - o

T ) e )G
where
dnin (1) = min d’“.(”) - mklfl Z:EZ))
s BT g

with g(x) defined in (8). By the definition of B and condition
(GQC.d) we get

k-1

> Vi)

=1

< q(x)

o0

1Bl =

which together with inequalities (20)—(22) ensures

k-1

> VE(%)

=1

Cmin

|||B‘Hso = < Cl(f() S dmin <

Cm ax

o0

wherefore A > 0 by inequalities (18)—(20) and Remark 14. W

We now know that every pair (X, ) satisfying the KKT
conditions must have A > 0, provided that GQC holds. Further-
more, strict complementarity ((14)) must hold. Since 5\7 > 0,
we have 5\1(931 — fi(%)) =0 only if z; — f;(X) =0, ie., x =
f(x). In other words, any candidate for primal optimality must
be a fixed point of f(x). It remains to show that there always
exists a fixed point, and that this fixed point is unique. But
this is already done, since GQC and Lemma 10 ensure f(x)
is contractive, and the result follow from Proposition 9.

By now, we have shown that the unique point x* = f(x*) is
the only possible optimum of problem (12). Since this is true for
any scalarization vector g > 0, x* is the unique Pareto optimal
point of problem (9). Finally, Lemma 11 extends this to the
originally considered problem (5). By this, we have taken all
the steps to prove Theorem 7. |

In the next section we revisit the GQC, through a number of
special cases.

IV. SPECIAL CASES OF GQC

In this section, we discuss the general qualifying condition
(GQC) in more detail. Moreover, we present several new quali-
fying conditions, each of which implies GQC.

GQC has the benefit of giving a unified view of the qualifying
conditions. This is convenient for proving properties of Fast-
Lipschitz problems, and also for giving an overall understand-
ing for what the qualifying conditions ensure. However, GQC
may not always be suitable when determining whether or not a
given problem (or class of problems) is Fast-Lipschitz. This is
because the generality of GQC comes at the price of analytical
and computational complexity and cumbersome notation. For
example, conditions (GQC.c) and (GQC.d) become increas-
ingly tedious to verify as the integer k& grows. However, as we
will see, the special cases can yield clean and easily verifiable
conditions, which are much easier to use in practice than GQC.

Furthermore, the specialized cases provide easy comparison
to the old qualifying conditions, and other related work such as
the standard and type-II standard function of [36] and [39]. We
start with the simplest case Q1, given below.

Qualifying Condition 1

(Qi.a) Vfy(x) > 0 with non-zero rows

Qi Qub) IVE) <1
Q100 VE(x)>0

Qualifying condition Q; is the special case of GQC when
k = 1.1t is the simplest case of Fast-Lipschitz optimization, and
only requires a monotonic objective function fy(x) and a mono-
tonic, contractive constraint function f(x). Q; is highly related
to standard interference functions [36]. In fact, any problem (5)
with monotonic objective function and standard constraints is
Fast-Lipschitz [41, Theorem 4.2], [44]. The difference between
Q1 and case (i) of the Old Qualifying Conditions (7) lies in
condition (Q;.a), where we now allow Vf;(x) > 0 as long as
no row consists only of zeros.

Qualifying Condition 2 is a simplified version of GQC with
k=2.

Qualifying Condition 2
(Qz.a) Vio(x) >0
(Q2.b) VE(x)2>0, (e.g., Vi(x) < O)
Q2.0 [[VEX)l < a(x)

where q(x) £ min;

Q:

min; [V (x)]ij
max; [V (x)];;

Proposition 16: Qualifying condition Q2 implies GQC.

Proof: Condition (GQC.a) is implied by (Q2.a). Note that
if any element of Vfj(x) is zero, then ¢(x) = 0 and condition
(Qa.c) cannot be fulfilled. We can therefore, without loss of
generality, use a strict inequality in (Qs.a). Condition (GQC.b)
is fulfilled since |||V (x)|||~c < q(x) by condition (Qs.c), and
q(x) < 1. Finally, conditions (GQC.c) and (GQC.d) are (for
k = 2) given exactly by (Q2.b) and (Qs.c), respectively. W

Condition (Q2.b) requires that the square of the gradient is
non-negative, but is particularly easy to verify when Vf(x) <
0. Note that also Vf(x) > 0 fulfills (Q2.b), i.e., (Q2.b) is more
general than (Q;.c). However, this generalization comes at a
cost since (Qs.c) is more restrictive than (Q;.b) in the sense
that it requires the specific norm ||| - ||| and that q(x) in general
is less than one.

The formulation where Vf(x) < 0 corresponds to a non-
increasing objective function, and the norm |[||Vf(x)]||~
is small enough, Q9 is closely related to type-II standard
functions [44].

Qualifying Condition 3
(Qs.a) Vfy(x) >0

Qzb) [[VE&)l <

q(x)
1+q(x)

Qs

Qualifying condition Q3 can be seen as the special case of
GQC when k = oo, as we see in Proposition 17. In contrast
to the other qualifying conditions, Q3 does not require non-
negativity of Vf(x) (or (Vf(x))*). It is only required that f,
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is monotonic and the infinity norm of Vf(x) is small enough.
However, (Qs.b) is significantly stricter than (Q2.c) because
0<q(x) <1 implies ||VEGX)| < a(x)/(1+q(x)) <1/2 in
(Qs.b).
Proposition 17: Qualifying condition Q3 implies GQC.
Proof: Condition (Qs.a) implies (GQC.a) and condi-
tion (Qs.b) implies |||VEf(x)||lc < 1/2, whereby condition
(GQC.b) is fulfilled. Condition (GQC.c) is irrelevant when k =
00.% Finally, condition (GQC.d) is implied by (Q3.b) because

q(x) VEG) Il
IVEG|ll <q(x)  (23)
“Tra) - IVE®)
where the implication above follows from that:
> VI <> [[IVEG|
=1 o =1
S VEE)]
vepL = ECll
< 2 MIVECOll = TG

<q(x).

The first two inequalities follow from sub-additive and sub-
multiplicative properties of matrix norms. The equality follows
from the geometric series because |||Vf(x)|||cc < 1, and the
last inequality is expression (23). This concludes the proof. W

The qualifying conditions can be further simpliﬁed by intro-

ducing 0(x ) min; ; [Vfy(x)];; and A(x ) max; j [Vo(x)];;-
These are the smallest and largest elements of Vfy(x), regard-
less of column. The difference compared to ¢ and A in (7h) is
that we now evaluate § and A for each x, instead of taking the
extremes over all x. We can now bound
. mini [Vfoiij minij [Vfo]”
= min =
J max; [Vfo]zj - max;; [Vf()]”

6(x)
Ax)

q(x) 24)
Since both ¢(x) and q(x)/(1 + q(x)) are increasing in q (recall
q(x) > 0), we can lower bound q(x) by d(x)/A(x) in any one
of the qualifying conditions above. This gives the remaining
qualifying conditions of this section. They are all special cases
of previous conditions—easier to verify and analyze, at the
expense of being more conservative.

Qualifying Condition 4
(Q4.a) Vio(x)>0
0 (Qsb) VE(x)>>0, (eg, VF(x)<0)
4
o
@0 IVE.. < 3o
Qualifying Condition 5
(Qs.a) Vip(x)>0
Qs 4(x)
Qsb) [[VE®)l. < X+ A

Qualifying conditions Q4 and Q5 are obtained when insert-
ing inequality (24) in (Qz.c) and (Qsz.b) respectively. They
imply Qs and Qs which in turn imply GQC by construction.
Note that qualifying conditions Q4 and Qs have previously
appeared as [1, case (ii)—(iii)].

4This is discussed in the proof of Theorem 7, after (17).

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 4, APRIL 2016

We will now end this section with the observation that the
old qualifying conditions are a special case of GQC.

Proposition 18: The Old Qualifying Conditions (7) imply
GQC.

Proof: We will show how each case of the old qualifying
conditions imply one of the qualifying conditions 1-5 above,
which in turn implies GQC.

case (i) = Q1: Condition (Q;.a) is implied by (7a), (Q1.b)
and (Qq.c) are the same as (7b) and (7¢).

case (ii) = Q4: Conditions (Q4.a) and (Q4.b) are the same
as (7a) and (7e). Condition (7d) implies Vfy(x) = 1,
whereby 6(x) = A(x) = ¢. Condition (Qq4.c) therefore
requires that ||| Vf(x)|||« < 1, which is ensured by (7f).

case (iii) = Qs: Condition (7g) requires f(x) to be scalar
valued, whereby Vfy(x) only has one column. The

deltas of condition (7h) can therefore be written as & 2
mingep 6(x) < (x) and A 2 maxeep A(x) > A(x).

This gives
whereby
IIVEG) 0 < 5f = 1? ﬁA =1 f??iﬁi‘?x>

and (Q5.b) is ensured. The first inequality is condition

(7h), the second inequality follows from (25) because
h(a) = a/(1 + a) is an increasing function of a.

We have now showed how each case of the Old Qualifying
Conditions implies GQC, through the implication chain

= Q = O
GQC = Q = Q = (i
TS e— Qs e i

This concludes the proof. |

The next section will loosen some of the assumptions of the
optimization problem structure, i.e., investigate problems not
entirely in Fast-Lipschitz form.

V. RELAXATIONS OF THE FAST-LIPSCHITZ FORM

This section considers relaxations of the Fast-Lipschitz form
that, e.g., require the same number of constraints as variables.
Section V-A shows a technique for handling more constraints
than variables, and Section V-B shows a situation with fewer
constraints than variables. Finally, Section V-C discuss the case
when the objective function does not depend on all variables.

A. Additional Constraints

In this section we complement the Fast-Lipschitz form (5)
with an additional set X. Hence, we consider the problem

max  fy(x)
st. x; < fl(X) Vie A
w = fi(x) VieB
xeX. (26)
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Corollary 19: 1f GQC holds, and X contains a point x* =
f(x*), then problem (26) is Fast-Lipschitz.
Proof: Relax the problem by removing the new constraint
x € X. The relaxed problem is our main problem (5), whereby
the qualifying conditions and Theorem 7 ensure x* = f(x*)
is the unique optimum. Since x* € X, this is also the unique
optimum of problem (26). |
In theory, we can handle any set X provided we can show
x* € X. For example, X does not need to be bounded, convex,
or even connected (i.e., X can consist of mutually disconnected
subsets). In practice however, the most common form of X is
a box constraint, for example a requirement of non-negativity,
X = {x: 0 < x}. Inthese cases, X’ becomes the natural choice
for the imagined bounding box D.

B. Fewer Constraints Than Variables—Constant Constraints

The Fast-Lipschitz form in problem (5) requires one (and
only one) constraint f; for each variable x;. In this section
we will look at the case when the number of constraints (f;)
are fewer than the number of variables. We will assume that
the individual variables are upper and lower bounded, which is
always the case for problems of engineering interest, such as
wireless networks. This means we get an extra constraint set
X as discussed in Section V-A. We investigate the case when
all constraints are inequalities. It follows from Lemma 11 that
the following results are true also for problems with equality
constraints.

Consider a partitioned variable x = [y” z7]" € X c R"

max fy(x)
sty < f,(x)
xe X,

v JyeXy={ya, <y<by}
WlthX—{X-{Zexz:{z:azngbz} @D

In the formulation above, there are no constraints f; for the
variables z;. However, by enforcing z € X, twice we get the
equivalent problem

max fp(x)
sty < f,(x)
z < f,(x) = b,
x € X. (28)

This problem has the right form (26) and is Fast-Lipschitz if

Vyfe(x) Vyf,(x) | Vyfo(x)
V., (x) szz(x)} and - Vo = [sz(?(x)]

fulfills GQC. Since f,(x) = b, is constant, Vf(x) simplifies to

V=[S0 o)

|

The special structure of Vfy(x) can be exploited to construct
less restrictive qualifying conditions.

First, consider problem (27) with a fixed z € X,. The prob-
lem can be written

max  foj,(y)
sty < fy\z(y)
y € X,. (29)

We will refer to problem (29) as the subproblem (fy,, fy|,).
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Proposition 20: Consider problem (28). Suppose that (a) the
subproblem (fj,, fy ;) fulfills GQC for all z € A}, and it holds
for all x € X, that either.
(b.i) V,fp(x) >0, and V£, (x) >0 with non-zero rows, or
(b.ii) V,fy(x) > 0 with non-zero rows, and V£, (x) > 0, or
(b.iii) [Vt () [/ (1= [y £y () 1) < 6 (3)/ Ay (),
where  0,(x) = min;; [V f(x)];; and Ay(x)=
max;; [Vyfo(x)];;-
Then, problem (27) is Fast-Lipschitz.
Proof: We refer to the arguments of Section III-C where
we modify Lemma 15 as follows.
The particular form and partitioning remains in the defini-
tions (15), giving

A=[TEE o= [ar o]
o= |Vam|r= o)

Consider again (16) and denote E 2 (I-A)ie,A=Ec.
As in the proof of Lemma 15, E is well defined if p(A) < 1.
This is the case, since the eigenvalues of a block triangular
matrix are the union of the eigenvalues of the diagonal blocks,
wherefore p(A) = p(Aj1) < 1 by assumption (a).

As in the proof of Lemma 15, we must show A > 0. This
time we will make use of the block structure of A and c.’ From
the block matrix inverse formula we get

Eix| |a

Eg | [c2

where Ei; = (I — All)_l, Eis =0, Ey; = Ay1E;; and
E22 = I, i.e.,

E;

A:G—A)%:[&l

{)\1} _ [ Eiic; } _ [ Eiicy }
A2 Ejici +c2 AsiEqici + ¢

Note that A\; = Ej1¢; = (I — Aq1) 'eq, so Ap > O since the
subproblem (fy,, f,|,) fulfills Lemma 15 by assumption (a).
The second block component is

A2 = Ag1Eqic1 + ¢ = Ag1 A1 +co. (31
Given that Ay > 0, we need to show Ay > 0 if either of
assumptions (b.i)—(b.iii) hold.

We start with assumption (b.i), which ensures co > 0 and
A5, > 0 with non-zero rows (so A1 A; > 0 by Remark 14),
wherefore Ao > 0 by (31).

Assumption (b.ii) assures As; > 0 and c, > 0, wherefore
A2 > 0 by (31).

Finally, assuming (b.iii) is fulfilled, we see that Ay > 0
if co > —As1Eq1¢1. Analogous to (19) and (20), this holds
if min; [Cg]i > |||A21E11‘H max; [Cl]i, or since c; > 0 and
Eq = (I — A11)71 = ZZO:O Alfl, when

min; [ca], ‘ il &
Agy Z AT,
k=0

— %
max; [Cl]i

(32)

o]

SFormulas for the inverse of a block matrix, as well as the products of two
block matrices can be found in [45].
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By the triangle inequality, the sub-multiplicative property of
matrix norms and the geometric series, the right side of (32)
can be upper bounded by

[l Aa]]l ok
A 2 ||[A ) A (33)
T TAuil, - || AT
Finally the definitions of ¢; and 3 _; p; = 1 gives
min; [cp];,  Min; >_; [Vafo(x)];; 1
max; [Cl}i max; Z] [vny (X)]ij Mj
ming; [V fo(x)];; >, 1
T max;; [vny(X)]i]‘ Zj Mg
6(x)
- : (34
Ay(x)

By combining inequalities (32)—(34), a sufficient condition
ensuring Ag > 0 is

|| A1l
L —[[|A1]ll

04(x)
Ay(x)

which is guaranteed by assumption (d). This concludes the
proof. ]

C. Non-Strictly Monotonic Objective Function—Variables
Missing in Objective Function

Sometimes it is practical or necessary to formulate problems
where not all variables appear in the objective function.
For example, the problem

max fy(x)
st x <f,(x,2)

z < f.(x,2)

has some variables not affecting the objective function and is
not in Fast-Lipschitz form. Redefining f; = fy(x,z) gives a
problem of the right form (5), but V,fy(x,z) = 0 everywhere.
Therefore, condition (GQC.a) and Theorem 7 can not be used
to classify the problem as Fast-Lipschitz.

The situation above is a special case of the following prob-
lem. Consider a partitioned optimization variable (x,z) and the
problem

max fo(x,2z)
st x < fy(x,2)

z < f,(x,2). (35)

Suppose fj is monotonic, i.e., Vfy >0, but partitioned such that

_ vxfO (Xa Z)
Viy(x,z) = [szo(X, 2)
where Vfj(x,2) has non-zero rows for all (x,z) € D, while
V.fo(x,z) can have zero rows. By partitioning the objective
function gradient, one can find situations when problem (35) is
actually Fast-Lipschitz.
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Proposition 21: Consider problem (35). If it holds, for all x
in D, that

(a) Vxfy(x,z) > 0and V,f(x,2) >0

| Vxix(x,2) Viif,(x,2)
® VEx2) = G e k2 Vot(x.z) | 2"
(c) |I|VE(x)]|] < 1 for some matrix norm, and

(d) V,fx(x,z) has non-zero rows.
Then, problem (35) is Fast-Lipschitz.

Remark 22: The condition that the ith row of V,fx(x,z) is
non-zero means that an increase in the variable z; will allow an
increase of some variable x;, which in turn will influence the
objective.

Proof: The proof of Theorem 7 can be reused, with some
alterations to Lemma 15.
The partitioning of Vf and Vfj remains in A and c, i.e.,

Vi v =lan ax]

-[a)

Assumption (a) and g > 0 gives ¢c; > 0 and co > 0. Just as
in Lemma 15, assumptions (b) and (c) guarantee the existence
and non-negativity of E= (I - A)" !, soA=(I—-A) lc>
0 is well defined and non-negative.® Thus, it remains to show
A=Ec>0.

A=

fx(x,2)
e~ |[Tlitea)]

Expressing the inverse E = (I — A)~! block-wise, we have
I-A)"'= |:IA11 A ]1 _ [Eu E12:|
A21 I- A22 E21 E22

where  Ei; = (I— (A + A(I— Ag) 'Ay))'  and

Es = (I — AQQ)_lAglEll. ‘We now have
{)\1} _ [Eu E12] [Cﬂ _ [E11C1] n |:E12] c
A2 Ez1 Egx| |co Eai¢y Exn |
Since E > 0, all blocks E;; are non-negative. The second term
is always non-negative and can be ignored, it is enough to show
that the first term is strictly positive.

Since ¢; > 0, and Eq; > 0, we have that A\; > 0 if Eq;
has non-zero rows (Remark 14). This is always the case
since Eq; (defined as an inverse) is invertible. The second
component can be expressed in terms of the first compo-
nent: Ay = (I — A22)71A21>\1. When Ay >0, Ay A >0
if Ao = V,fx(x,2z) has non-zero rows (Remark 14). This
is true by assumption (d). Since (I — Ags) ™! is invertible it
has non-zero rows and Ay = (I — Agy) (A1 A1) > 0, which
concludes the proof. |

We end this section by a general example.

Example: Start with problem (5). For a lighter notation,

we assume all constraints are inequalities. Transforming the
problem to an equivalent problem on epigraph form gives

max t
st t < fy(x)
x < f(x).

6In contrast to Lemma 15, we only have the weak inequality ¢ > 0.
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This problem has a (non-strictly) monotonic objective, regard-
less of fy(x). By writing this as

max go(t,x) =1t
s.t. t< gt(t,x) = fo(X)
x < g, (t,x) = f(x)

we obtain
_ [Vesolt,x) ] _ [1
Vego(t, x) = _inz(t’x)} B [0]
_Vt t(t,X) Vi x(t7x>
Vg(t,X): int(t,x) vxix(t’ ):|
~ ot tto)
o _Vfo(x) Vf(X) )

Proposition 21 can now be applied, and the problem is Fast-
Lipschitz if Vg > 0, p(Vg) < 1 and Vf; has non-zero rows.
Since the eigenvalues of a block triangular matrix are the union
of the eigenvalues of the diagonal blocks, we have p(Vg) =
p(V£), wherefore the problem is Fast-Lipschitz if

e VI(x)>0,|||VE(x)||| <1, and

e Vfy(x) > 0 with non-zero rows.

This is precisely qualifying condition QQ; applied to the original
problem (5), i.e., no generalization was achieved by considering
the epigraph form of the problem.

This concludes the main part of the paper. In the following
section we will illustrate the new theory with two examples.

VI. EXAMPLES

We begin by illustrating Fast-Lipschitz optimization on a non-
convex optimization example in Section VI-A. In Section VI-B
and C, we apply the novel results established in this paper to
state conditions for when two types of optimal control problems
are easily solvable. Finally, in Section VI-D we compare an
interior point method with finding the fixed point of the con-
straints on a problem which is both convex and Fast-Lipschitz.

A. Simple Non-Convex Example

Consider the problem

max (%)
st x < f(x)
xeX={x:0<x<1} (36)

where x € R?

. 2x1 + x2 o 1—1—(1,1‘3
fo(x)_[$1+2$2]’ and f(x)—O.SL_Hm% .

If either a or b are positive, the problem is not convex (the
canonical constraint functions z; — f;(x) become concave).

At this point we do not know if x* = f(x*) € X'. However,
following the results of Section V-A, we can assume this is the
case and examine whether:

max fy(x)

st x <f(x) 37)
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fulfills GQC (or Q;—Qs5). The qualifying conditions must
apply in the box D, which we select equal to X (no point
outside of D = A& is feasible, hence all feasible points lie
in D).

The gradients of the objective and constraint functions are

2 1

Vi = [1 2

} and Vf{o bxl].

ary 0

Since Vfy > 0 for all x, the assumptions (GQC.a) on the
objective function is always fulfilled. We will now check all
sign combinations of a and b.

a,b > 0: If both a and b are non-negative, then Vf(x) > 0
for all x in D and condition (Q;.c) holds. To verify condition
(Q1.b), one must find a norm || - || such that |||Vf(x)||| < 1 for
all x in D. When the co-norm is used, we get

= maxmax {|bz1|, |axz|} < max{b,a}<1

max [[[VE(x)

oo

if a,b < 1. Thus, when 0 < a,b < 1, the problem is Fast-
Lipschitz by Q.

a,b<0: If a and b are instead non-positive, we have
Vif(x) <0 for all x in D and condition (Q4.b) is fulfilled.
In order to verify (Qg.c), we need d(x) and A(x). These
are defined pointwise in x, as the smallest and largest (in
absolute value) element of Vfy, i.e., d(x) =1 and A(x) =
2 Vx. Condition (Q4.c) now requires, for all x € D, that
| VE(x)||lo < 0(x)/A(x) = 1/2. From the previous case we
know that [||Vf(x)|||s < max{|a|,|b|} for all x € D, so the
problem is guaranteed Fast-Lipschitz by qualifying condition
Qg, provided that —1/2 < a,b < 0. Note that this would not
have met the old case (ii) in (7d), since fo(x) # c17x.

ab < 0: When a and b have different signs, neither (Q;.c),
nor (Q2.b) holds. Instead, one can try qualifying condition Qs,
which does not place any sign restrictions on Vf(x). It is only
required, in (Q3.b), that

VEE)|Il, < 300 + A

These quantities are unchanged from the previous cases, so
d(x) =1,A(x) =2 and |||VE(%)||lc < max{|al,|b|}, so the
problem is Fast-Lipschitz by qualifying condition Q5 if both |a
and |b| are less than 1/3. Also in this case, the Old Qualifying
Conditions would not have worked since case (iii) in (7g)
requires a scalar objective function.

Solution of the Problem: 1If problem (37) is Fast-Lipschitz by
any of the cases above, the optimal point x* is found by solving
x* = f(x*). We now solve the problem when a = —0.3 and
b = 0.3, by iterating

(38)

This sequence will converge to x* = f(x*) since the qualifying
conditions imply that f is contractive (Lemma 10). The iterates
x* of (38), together with the feasible region of the problem is
shown in Fig. 1(a). Clearly, x* = f(x*) € X, so Proposition 19



872
T T T
0.6 |- -l
04l i) .
Sl R AR
—o— xFH1—f(xF)
0.2 - ]
0 ! ! ! ! !
0 01 02 03 04 05 06 07
z1
(@
107t ® ° \ n
o
°
[ ]
[ ]
10—6 - ® ° .
L
L
L]
L]
10—11 - L ° =
[
[
[ ]
" [ ]
-16 L ! I
10 0 5 10 15 20
k
(b
Fig. 1. Plots from the simple example in Section VI-A. (a) Illustration of

the feasible region of problem (37) with a = —0.3 and b = 0.3 (making the
feasible region non-convex). The iterates (38) of the solution quickly converges
to x* = f(x*), where all constraints are active. (b) Convergence of the iterates
(38), measured in the co-norm. The convergence is geometric (linear in the log
domain) and the optimal solution is found within an accuracy of 106 after 8
iterations.

applies and x* is optimal also for the original problem (36). The
convergence the iterations (38) is shown in Fig. 1(b).

B. Inventory Control Example

We now demonstrate how Fast-Lipschitz optimization can be
used for solving Inventory control problems, a class of optimal
control problems with numerous practical applications, e.g.,
see Example 1.1.1., pp. 3—4 in [46]. Note that, without loss
of generality, the inventory control dynamics (see (39) below)
can be considered as flow constraints over a network with
tree topology. Therefore, our result are easily generalized to
network flow optimization problems over trees.

Consider the dynamics of an inventory

s = st 4ol — df (39)
where at time 4, s° > 0 is the number of stored items, u* > 0
is the number of ordered (or produced) items, and d* > 0 is
the demand. The parameter ¢ > 0 represents the rate change in
the number of stored items between time periods, i.e., storage
losses if ¢ < 1 or storage gains if ¢ > 1. Such variations are
natural in many inventories, for example ¢ < 1 can represent
the percentage of crops that gets ruined in storage between
time periods, and ¢ > 1 can represent interest rate when (39)
describes a bank account where u and d are the deposits and
withdrawals, respectively. The goal of inventory planning is to
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find an ordering policy that minimizes the costs of ordering and
storing. Formally the problem is given as follows:

N
g a;s' + b;u’
i=1

min
{uié\]:1
st. st=0
st =cs'+ut—d, i=1,... N—1
0<s", i=2,...,N+1
0<wu, i=1,....,N (40)

where a;, b; > 0 represent the storage costs and ordering costs,
respectively, at each time 7. Using the Fast-Lipschitz qualifying
conditions, we can find conditions on a;, b;, and ¢, for which
the optimal policy of (40) can be easily computed.

Result  23: Consider Problem (40) and set amin =
min {a; 5\22-1 and byax = max'{bi}f_vzl. If bpax(c+1) <
Gmin, then the optimal policy is v’ = d*, fort =1,..., N.

Before deriving Result 23, consider a relaxed version of
Problem (40) denoted by (R) where the constraint 0 < u' is re-
laxed. It is easily verified that if the optimal choice of {sl}i\:;l
in (R) is s*=0 for i=2,...,N+1, then v’ =d’ is the
optimal policy of (40). Therefore, we next show that Result 23
holds by equivalently formulate (R) in a form which reveals that
(R) actually satisfies Fast-Lipschitz qualifying conditions when
bmax(c + 1) < @min, implying that s* = 0.

To reveal the potential Fast-Lipschitz structure of (R), we use
the change of variables 2* = —s and y* = —u’/«a and reorder
the terms to obtain the equivalent formulation

N
Z a; 2" + aby’

max
{Ul}fvzl i=1
st. y=fy(y,z)
z <0 1)
T nt1nT
where y = [y',....y"]", z=[2%,... . "] [fy(y,2)], =

(211 — ¢2%) /o, and 2! = 0. Problem (41) is on the form of
Problem (28) and hence we can use Proposition 20. Condition
(a) of Proposition 20 clearly holds since fy (y,z) is constant
when z are fixed, and condition (b.iii) holds when

1 min
e 4 (42)
o Obmax
where we have used that |||V fy(y,z)|]|c = (1+¢)/a,

|||Vyfy(y, Z)|||oo =0, 5Z(Za Y) = Umin» and Ay(za Y) = bmax-
By multiplying (42) by « and rearranging we see that (41) and
(R) are Fast-Lipschitz when byax (¢ + 1) < @min-

C. Optimal Control Example

Consider a discrete time system with the state s € R", the
bounded and positive control u € RP, and the dynamics
st =f(s",u’) +w' (43)

where f : R” x RP — R™ and w* € R” is an additive, bounded
disturbance. At each time instance, the system has a cost
g(s',u") that is strictly increasing in all variables. The design

objective is to choose the control inputs {u’},_; that minimizes
the accumulated cost over N periods. The optimal control
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. . N L
problem, given the disturbances {w'},_; and the initial state
Sinit, becomes

N
min Zg(si,ui)
{uz}i\le i=1
S.t. S% = Sinit )
st =f(s',u)+w',i=1,...,N—1

Oéuigumaxv Z:]-va (44)

It can be verified that if f(s,u) is increasing in u, then the
optimal control is u”* = 0. However, when f (s,u) is decreas-
ing in u, then there is a tradeoff between choosing a small u’
to make g(s?,u’) small, or a large u’ to make g(s**!,uit!)
small. Therefore, we consider only the non-trivial case when
f(s,u) is decreasing in u. With Fast-Lipschitz optimization it
is possible to determine conditions on the costs and dynamics of
problem (44), under which the optimal control is simply given
by u”* = 0 for all 4.

Result 24: Consider problem (44) and assume that g(s, u) is
increasing in s and u and f(s,u) is decreasing in u. Assume
further that the pair Vsf(s, u) and Vgg(s, u) fulfills the GQC
(in place of Vf(x) and Vfj(x) respectively) and

maxXs u ” |vuf(57 u)| Hoo
1- maxXs u || |st(S, u) (Sv u)‘ ”

Inins,u min; [vug(sv u)}z

maxg u max; [Vsg(s, u)];

(45)
for all allowed u and all reachable s. Then, the optimal solution
{ui*}i]\i1 is given by u™ = 0 for all 4, regardless of the problem
horizon N, the initial state s;y;;, and the disturbances {Wz}i\;

The result can be derived be considering a Fast-Lipschitz
problem equivalent to (44) as follows. Introduce the vectors

r—s! —u!
y = eR™W z= e RPN
[ sV —uV
- wl
w=| ! | eR™W
L w?
and let y* = —s, z' = —u’, and x = [y7 zT]T. Problem (44)
can then be transformed to the equivalent problem
max  fo(x)
sty =f,(x)
Zmin <Z <0 (46)

where the ith (n x 1)-block of fy (x) is given by

1=1

£ i=2...,N

—Sinit
y[i] (x) = _f(_yi,7 _Zi) Wt

and fo(x) = — Zfil 9(—yi, —2z;). By Corollary 19 and
Lemma 11, (46) is Fast-Lipschitz if the relaxed problem

max Jo(x)
sty < f,(x)

z<0 A7)

is Fast-Lipschitz. But (47) is on the form of (28) so Proposition 20
can be used to determine when it is Fast-Lipschitz.
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To use Proposition 20 we need to determine the form of
Vyfy(x) and V£, (x). Simple calculations show that V fy, (x)
and Vyfy,(x) are N x N block matrices of n x n and n x
p blocks, respectively. Moreover, all blocks are zero except
the block sub-diagonal, the blocks below the block diagonal,
which are (Vof(—y!, —z!),..., Vf(—y"V 1, —2z¥"1)) and
(Vaf(—yt, —z!), ..., Vuf (—yV 1, —2zV71) for V,fy(x)
and V£, (x), respectively.

Now we can verify that condition (a) of Proposition 20 holds,
since Vyf,(x) and V£, (x) are sub-diagonal with V¢f and
Vuf, respectively, on the sub-diagonal and by the assumptions
of Remark (24) Vf and Vf fulfill the GQC. Next we deter-
mine under what condition (b.iii) of Proposition 20 holds. By
using again the structure of Vy fy (x) and V f, (x) we get

1198, (9., < mase | 9.8(s, w] . @®)
I1Vaty ()l < max [[Vaf(s, w)lll (49)
Ay (x) = max [Vy fo(x)];, < Mmax max [Vsg(s,u)], (50)
da(x) = Hlllrll [Vafo(x)]; < nsrnun miin [Vug(s,u)], (51)

where the optimizations is over the permissible controls u and
the reachable states s. Condition (b.iii) is now fulfilled if

IVaty (llle _ da(x)
1= [[Vyfy &)l Ay()

ie., if

maxs y ||| Vuf (s, u) ming , min; [Vug(s, u)];

lloe
1 — maxg y |||[Vsf(s, u)

lllo =~ maxsumax; [Vsg(s,u)],

When the inequality above holds, problem (47) fulfills
Proposition 20, whereby problems (47) and (46) are Fast-
Lipschitz. This implies that the optimal solution is given by
y* =1f,(y*,z*) and z* = 0 and hence the optimal solution of
(44) is given by u”* = —z™* = 0 for all 7.
We now apply Result 24 on two optimal control problems.
a) Linear first order system: Consider for illustrative pur-
poses a linear first order system with a linear cost function. The
optimal control problem (44) becomes

N
Zg(si,ui)
i=1
st st = Sinit
s = f(s'u) +w' i=1,... N -1
i=1,...,N

min
iV IN
{uw'}i,

0 <u' < tUmax, (52)
where f(s,u) = as — buand g(s,u) = ¢ss + cyuwith a, b, cs,
¢y, > 0. In this case, the gradients are given by V f(s,u) = a,
Vuf(s,u) = —=b, Vsg(s,u) = cs and V,g(s,u) = ¢,. Since
the gradients are scalar and constant, Result 24 applies to
problem (52) provided that a < 1 and a/(1 —a) < ¢, /cs. If
this is the case, the optimal solution must be u™* = 0 for all s.
We remark that this is an important and non obvious result.
b) Non-linear first order system: Consider again problem
(52), but with the dynamics given by
fs,u) =

as
1+s

s — bu.

(33)
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We continue to assume a, b > 0, and the cost function g(s, u)
is left unchanged from the linear case. The factor as/(s + 1)
can be seen as a variable decay-rate, under which large states
decay with a factor close to a while small states decay almost
instantly. Assume that the disturbances w® are non-negative,
and let the upper limit of u* depend on the current state s°, u <
Umax (8%) Where U ax (s) =as?/b(1+s). Note that Corollary 19
still applies when moving from problem (46) to problem (47)
because u™* = 0 < Upax(s®), so the optimal values u'* = 0
of the relaxed problem (47) are always feasible in problem
(46). The modified constraints u,ax(s°) ensure f(s®,u’) >0,
whereby a non-negative sj,i; > 0 implies that all future states
s' are non-negative. All gradients from the linear example are
left unchanged, except

52 4 2s
Vsf(s,u) =a—-———.
Jlouw)=ag o
This gradient can be bounded by 0 <V, f (s,u) < a, since
the modified constraint wy,ax(s*) ensures that only non-
negative states s can be reached. Therefore, it holds that
maxs y |||Vsf(s,u)]||c < a whereby the conditions

Cy
and —

la| < 1 (54)

—a g

remain unchanged from the linear example. When these condi-
tions hold, we know that «* = 0 for all 7 is the optimal solution.
Because of the non-affine equality constraints in (53), problem
(54) is a non-convex problem in N variables subject to 2NV
non-trivial constraints when .y is a function of st. However,
by using the Fast-Lipschitz properties of the problem we have
solved it without performing any calculations, except for those
involved in verifying the assumptions.

We now conclude this example by numerically solving two
instances of problem (52).

c) Numerical example: Consider two instances of prob-
lem (52) with the non-linear dynamics (53) denoted by (P1)
and (P2). (P1) has b= 0.3 and (P2) has b = 0.5, otherwise
the problems share all parameters where N = 20, sini¢ = 1,
a=0.5,cs =3, ¢, =2, and w’ are uniform random on [0,1].
Both (P1) and (P2) have 0 < a < 1, but only (P1) fulfills (54).
We can therefore guarantee that u’ = 0 for all i solves (P1),
but we cannot say anything about (P2), since the conditions
in this paper are only sufficient. The two problems are solved
numerically with Matlab’s built-in solver fmincon, and the
results are shown in Fig. 2. As expected by Result 24, the
optimal actions for (P1) is to always keep the control variables
at the lower bound and (P2) illustrates a case where Result 24
does not apply.

D. Fast-Lipschitz Versus an Interior Point Method

Interior point methods (IPM) are usually the main candidate
for solving constraint convex optimization problems. However,
when a problem is also Fast-Lipschitz then the optimization
problem can also be solved by finding the fixed point of the
constraints. In this section, we compare the two approaches
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Fig. 3. The running times for solving Sparse and Full by exploiting their
Fast-Lipschitz structure and finding the fixed point of the constraint and by
using an interior point method. (a) Sparse. (b) Full.

on problems of varying size that are both convex and Fast-
Lipschitz. We consider problems on the form

n
min E e v
X
=

=1
st. x<Ax+r, Vie{l,...,n} (55)

where x = {x;};"; € R" and r € R". We consider two in-
stances of problem (55), Sparse: where [A]; i+1 = [A]it1,; =
1/4 for i =1,...,n—1 and [A];+1, = 0 otherwise and the
elements of r are uniform random on [0, 4], and Full: where
[A];; =1/(2n) for i # j and [A]; ; = 0 otherwise and the
elements of r are uniform random on [0, 1]. Both problem
instances are convex and Fast-Lipschitz.

We compare the running times needed to solve Sparse and
Full using an IPM and solving (I — A)x = r, i.e., exploiting
the Fast-Lipschitz structure. We use Matlab’s built-in solvers,
the IPM in fmincon and backslash to solve (I—A)x=r. The
problem size n varies from 1 to 5000.

Fig. 3 depicts the results, where each data point is an average
of 10 runs. The worst case relative standard deviation (std),
i.e., std relative to the mean, of a data point is 0.26. The



JAKOBSSON et al.: EXTENSIONS OF FAST-LIPSCHITZ OPTIMIZATION

data point for n = 5000 in Full is missing since the IPM
always failed due to memory error. In all cases, solving the
linear system is significantly faster than using the IPM. The
differences are particularly apparent in Sparse (Fig. 3(a))
where Fast-Lipschitz goes from being 10? times faster than the
IPM when n = 1 to being 7 - 10° times faster when n = 5000.
This superiority of solving a system of equations over solving
general constraint optimization problems is intuitive because
most optimization techniques, including IPM’s, are based on
sequentially solving systems of equations with the same num-
ber of variables as the original problem (or more variables, e.g.,
primal-dual methods). Therefore, when a convex problem is
known to be Fast-Lipschitz it can significantly accelerate the
convergence speed by exploiting the Fast-Lipschitz structure.

VII. CONCLUSION

In this paper we significantly extended the previous Fast-
Lipschitz framework proposed in [28]. A new set of qualifying
conditions, that unify and generalize previous conditions, was
presented. Furthermore, we investigated problems that deviate
from the required Fast-Lipschitz form, either by not having
the same number of constraints as variables or by having
variables that do not affect the objective function. For these
cases we established conditions for which they are still Fast-
Lipschitz. Based on these new results, a larger set of convex
and non-convex optimization problems can be solved by the
Fast-Lipschitz method of this paper, both in a centralized and
in a distributed set-up. This avoids using Lagrangian methods,
which are inefficient in terms of computations and communica-
tion complexity especially when used over networks.

Several possible extensions remain to consider, for example:

* We believe that the Fast-Lipschitz optimization frame-
work can be extended to cover also non-smooth problems.
A potential benefit of such an extension would be to
form expressions such as x < f(x) = min{f; (x), f2(x)},
whereby problems with more constraints than variables
(f(x) : R™ — R? where p > n) could be considered.

* So far, only problems with Vfy(x) > 0 have been con-
sidered. The standard inequality we have used is a partial
ordering induced by the non-negative orthant R'", i.e.,
Viy(x) Zrr 0. A possible extension is to allow for prob-
lems where Vfy(x) =, 0 for a more general cone K. This
would allow a tradeoff between conditions for Vfj(x) and
conditions on Vf(x), which may give more flexibility in
the qualifying conditions.

We have already seen a similar example of this, when
case (ii) of the old conditions is generalized to Q5. In this
case, condition (7d) required fo(x) = ¢17x for some ¢ >
0, which can also be stated

fQ(X) c R, and Vfo(X) E}Cl 0

where /C; is the cone (ray) generated by the single vector
1. In Qs it is instead required that Vfy(x) > 0, which is
more general. This, however, comes at the price of a less
general requirement on f(x), since (Qs.c) requires

IIVE)[] <alx) <1

while (7f) only requires |||Vf(x)|||c < 1.
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