

On the application of optimization methods for secured multiparty computations

C. Weeraddana*, G. Athanasiou*, M. Jakobsson*, C. Fischione*, and J. S. Baras**

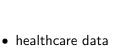
*KTH Royal Institute of Technology, Stockholm, Sweden

**University of Maryland, MD, USA
{chatw, georgioa, mjakobss, carlofi}@kth.se; baras@umd.edu

ACCESS ISS 18.09.13

social networks

social networks



social networks

e-commerce

Protect

Patient Information

social networks

e-commerce

• banks, and government services

- real world:
 - different parties, such as persons and organizations always interact
 - they collaborate for mutual benefits

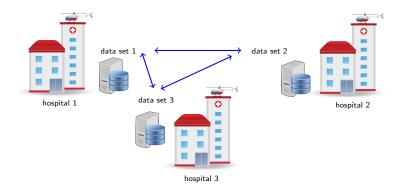
- real world:
 - different parties, such as persons and organizations always interact
 - they collaborate for mutual benefits

collaboration is more appealing if security/privacy is guaranteed

Real World

• example 1

- hospitals coordinate ⇒ inference for better diagnosis
- larger data sets ⇒ higher the accuracy of the inference
- challenge: neither of the data set should be revealed



Real World

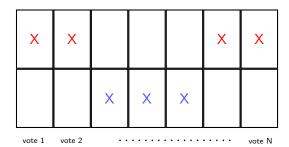
• example 2

- cloud customers outsource their problems to the cloud
- challenge: problem data shouldn't be revealed to the cloud

Real World

• example 3

- secured e-voting systems
- challenge: neither of the vote should be revealed



Secured Multiparty Computation

• solve, **in a secured manner**, the *n*-party problem of the form:

$$f(\mathbf{A}_1,\ldots,\mathbf{A}_n) = \inf_{\mathbf{x} \in \{\mathbf{x} | \mathbf{g}(\mathbf{x},\mathbf{A}_1,\ldots,\mathbf{A}_n) \leq 0\}} f_0(\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{A}_1,\ldots,\mathbf{A}_n)$$

- \mathbf{A}_i is the private data belonging to party i
- $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ is the decision variable
- $f_0(\cdot)$ is the global objective function
- $\mathbf{g}(\cdot)$ is the vector-valued constraint function
- $f(\cdot)$ is the desired optimal value

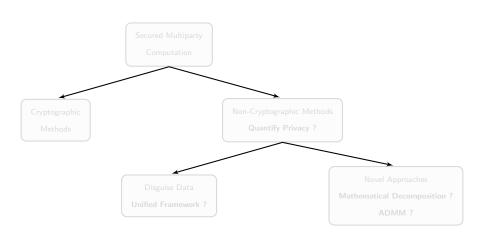
Secured Multiparty Computation

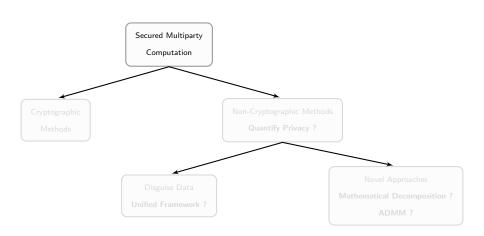
• solve, **in a secured manner**, the *n*-party problem of the form:

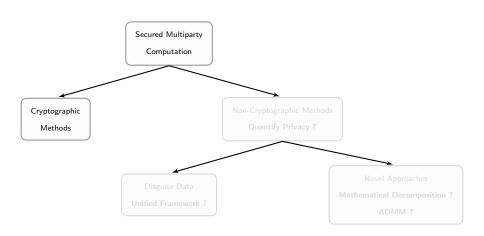
$$f(\mathbf{A}_1,\ldots,\mathbf{A}_n) = \inf_{\mathbf{x} \in \{\mathbf{x} | \mathbf{g}(\mathbf{x},\mathbf{A}_1,\ldots,\mathbf{A}_n) \leq \mathbf{0}\}} f_0(\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{A}_1,\ldots,\mathbf{A}_n)$$

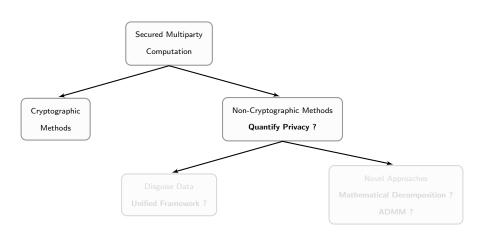
- \mathbf{A}_i is the private data belonging to party i
- $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ is the decision variable
- $f_0(\cdot)$ is the global objective function
- $\mathbf{g}(\cdot)$ is the vector-valued constraint function
- $f(\cdot)$ is the desired optimal value

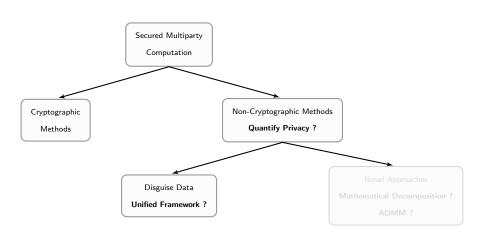
 can we perform such computations with "acceptable" privacy guaranties?

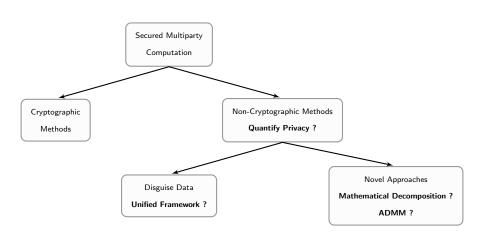


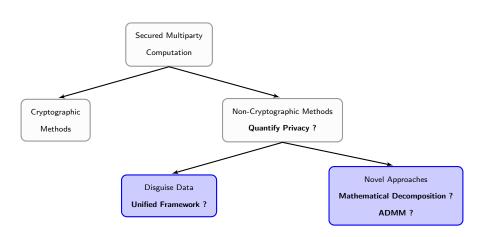




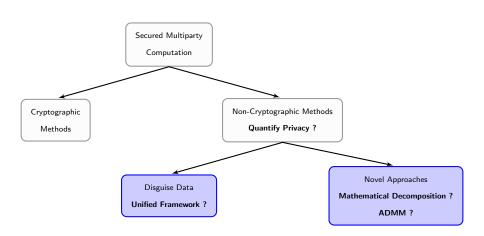








Our Contributions



Our Contributions

- unified framework for existing methods for disguising private data
 - absence of a systematic approach reduces the scope of applicability
 - unintended mistakes (e.g., [Du01, Vai09])
 - standard proof techniques for privacy guaranties.
- decomposition methods, ADMM
- general definition for privacy ⇒ quantify the privacy
- a number of examples
- comparison: efficiency, scalability, and many others
- for details, see [WAJ⁺13]

[WAJ+13] P. C. Weeraddana, G. Athanasiou, M. Jakobsson, C. Fischione, and J. S. Baras. Per-se privacy preserving distributed optimization

UNIFIED FRAMEWORK FOR DISGUISING PRIVATE DATA

General Formulation

we pose the design or decision making problem

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \le 0, \ i = 1, \dots, q$ (1)
 $\mathbf{C}\mathbf{x} - \mathbf{d} = \mathbf{0}$

- ullet optimization variable is $\mathbf{x} \in \mathbb{R}^n$
- f_i , $i = 0, \ldots, q$ are convex
- $\mathbf{C} \in \mathbb{R}^{p \times n}$ with $\operatorname{rank}(\mathbf{C}) = p$
- $\mathbf{d} \in \mathbb{R}^p$

we would like to solve the problem in a privacy preserving manner

Unification, Disguising Private Data for SMC

Proposition (change of variables)

- ullet $\phi: \mathbb{R}^m o \mathbb{R}^n$ be a function, with image covering the problem domain $\mathcal D$
- change of variables:

$$\mathbf{x} = \phi(\mathbf{z}) \ . \tag{2}$$

resulting problem:

minimize
$$f_0(\phi(\mathbf{z}))$$

subject to $f_i(\phi(\mathbf{z})) \le 0, \ i = 1, \dots, q$ (3)
 $\mathbf{C}\phi(\mathbf{z}) - \mathbf{d} = \mathbf{0}$

- \mathbf{x}^{\star} solves problem (1) $\Rightarrow \mathbf{z}^{\star} = \phi^{-1}(\mathbf{x}^{\star})$ solves problem (3)
- \mathbf{z}^* solves problem (3) $\Rightarrow \mathbf{x}^* = \phi(\mathbf{z}^*)$ solves problem (1)

Unification, Disguising Private Data for SMC

Proposition (change of variables)

- ullet $\phi:\mathbb{R}^m o\mathbb{R}^n$ be a function, with image covering the problem domain $\mathcal D$
- change of variables:

$$\mathbf{x} = \phi(\mathbf{z}) \ . \tag{2}$$

resulting problem:

minimize
$$f_0(\phi(\mathbf{z}))$$

subject to $f_i(\phi(\mathbf{z})) \le 0, \ i = 1, \dots, q$ (3)
 $\mathbf{C}\phi(\mathbf{z}) - \mathbf{d} = \mathbf{0}$

- \mathbf{x}^{\star} solves problem (1) $\Rightarrow \mathbf{z}^{\star} = \phi^{-1}(\mathbf{x}^{\star})$ solves problem (3)
- \mathbf{z}^* solves problem (3) $\Rightarrow \mathbf{x}^* = \phi(\mathbf{z}^*)$ solves problem (1)

privacy is via the function compositions:

$$\begin{split} \hat{f}_i(\mathbf{z}) &= f_i(\phi(\mathbf{z})) \;,\; \mathsf{dom} \\ \hat{f}_i &= \{\mathbf{z} \in \mathsf{dom} \phi \mid \phi(\mathbf{z}) \in \mathsf{dom} \\ f_i(\mathbf{z}) &= \mathbf{C} \phi(\mathbf{z}) - \mathbf{d} \;,\; \mathsf{dom} \\ \hat{h}_i &= \{\mathbf{z} \in \mathsf{dom} \phi \mid \phi(\mathbf{z}) \in \mathbb{R}^n\} \end{split}$$

original problem (big LP):

$$\label{eq:continuous} \begin{aligned} & \text{minimize} & & \mathbf{c}^\mathsf{T}\mathbf{x} \\ & \text{subject to} & & \mathbf{A}\mathbf{x} \geq \mathbf{b} \end{aligned}$$

- variable is $\mathbf{x} \in {
 m I\!R}^n$
- private data: $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$

original problem (big LP):

- variable is $\mathbf{x} \in \mathbb{R}^n$
- private data: $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$
- affine transformation: $\mathbf{x} = \phi(\mathbf{z}) = \mathbf{B}\mathbf{z} \mathbf{a}, \ \mathbf{B} \in \mathbb{R}^{n \times p}$, rank $(B) = n, \ \mathbf{a} \in \mathbb{R}^n$.

original problem (big LP):

- variable is $\mathbf{x} \in \mathbb{R}^n$
- private data: $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$
- affine transformation: $\mathbf{x} = \phi(\mathbf{z}) = \mathbf{B}\mathbf{z} \mathbf{a}, \ \mathbf{B} \in \mathbb{R}^{n \times p}$, rank $(B) = n, \ \mathbf{a} \in \mathbb{R}^n$.
- equivalent problem (outsourced to the cloud):

minimize
$$\hat{\mathbf{c}}^{\mathsf{T}}\mathbf{z}$$
 subject to $\hat{\mathbf{A}}\mathbf{z} > \hat{\mathbf{b}}$

- variable is $\mathbf{z} \in \mathbb{R}^p$
- data: $\hat{\mathbf{c}} = \mathbf{B}^\mathsf{T} \mathbf{c} \in \mathbb{R}^p$, $\hat{\mathbf{A}} = \mathbf{A} \mathbf{B} \in \mathbb{R}^{m \times p}$, $\hat{\mathbf{b}} = \mathbf{b} \mathbf{A} \mathbf{a} \in \mathbb{R}^m$

• original problem (find average of *K* private numbers):

minimize
$$(1/K) \sum_{i=1}^{K} x_i$$

subject to $x_i = a_i$, $i = 1, ..., K$

- variables are $x_i \in \mathbb{R}$, $i = 1, \dots, K$
- private numbers: $a_i \in {\rm I\!R}$, $i=1,\ldots,K$

• original problem (find average of *K* private numbers):

minimize
$$(1/K)\sum_{i=1}^{K} x_i$$

subject to $x_i = a_i$, $i = 1, \dots, K$

- variables are $x_i \in \mathbb{R}, i = 1, \dots, K$
- private numbers: $a_i \in \mathbb{R}, i = 1, \dots, K$
- affine transformation: $x_i = \phi_i(z_i) = z_i \alpha_i$, $n = 1, \dots, K$.

• original problem (find average of *K* private numbers):

minimize
$$(1/K)\sum_{i=1}^{K} x_i$$

subject to $x_i = a_i$, $i = 1, \dots, K$

- variables are $x_i \in \mathbb{R}$, $i = 1, \dots, K$
- private numbers: $a_i \in \mathbb{R}$, $i = 1, \dots, K$
- affine transformation: $x_i = \phi_i(z_i) = z_i \alpha_i, n = 1, \dots, K$.
- equivalent problem:

minimize
$$\sum_{i=1}^{K} z_i$$
 subject to $z_i = a_i + \alpha_i$, $i = 1, \dots, K$

- variables are $z_i \in \mathbb{R}, i = 1, \dots, K$

original problem (find average of K private numbers):

minimize
$$(1/K) \sum_{i=1}^{K} x_i$$

subject to $x_i = a_i$, $i = 1, ..., K$

- variables are $x_i \in \mathbb{R}$, $i = 1, \dots, K$
- private numbers: $a_i \in \mathbb{R}, i = 1, \dots, K$
- affine transformation: $x_i = \phi_i(z_i) = z_i \alpha_i, n = 1, \dots, K$.
- equivalent problem:

minimize
$$\sum_{i=1}^{K} z_i$$
 subject to $z_i = a_i + \alpha_i$, $i = 1, \dots, K$

- variables are $z_i \in \mathbb{R}$, $i = 1, \ldots, K$

• original problem (find average of *K* private numbers):

minimize
$$(1/K) \sum_{i=1}^{K} x_i$$

subject to $x_i = a_i$, $i = 1, ..., K$

- variables are $x_i \in {\rm I\!R}$, $i=1,\ldots,K$
- private numbers: $a_i \in \mathbb{R}, i = 1, \dots, K$
- affine transformation: $x_i = \phi_i(z_i) = z_i \alpha_i, n = 1, \dots, K$.
- equivalent problem:

minimize
$$\sum_{i=1}^{K} z_i$$
 subject to $z_i = a_i + \alpha_i \ , i = 1, \dots, K$

- variables are $z_i \in \mathbb{R}, i = 1, \dots, K$

• original problem (find average of *K* private numbers):

minimize
$$(1/K) \sum_{i=1}^{K} x_i$$

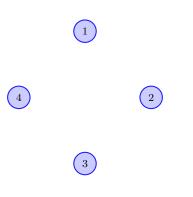
subject to $x_i = a_i$, $i = 1, ..., K$

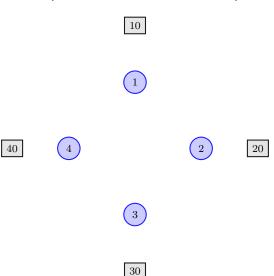
- variables are $x_i \in \mathbb{R}$, $i = 1, \dots, K$
- private numbers: $a_i \in \mathbb{R}, i = 1, \dots, K$
- affine transformation: $x_i = \phi_i(z_i) = z_i \alpha_i$, $n = 1, \dots, K$.
- equivalent problem:

minimize
$$\sum_{i=1}^K z_i$$
 subject to $z_i = a_i + \alpha_i \ , i = 1, \dots, K$ $\longrightarrow q^*$

- variables are $z_i \in \mathbb{R}, i = 1, \dots, K$
- $p^* = \frac{1}{K} \left(q^* \sum_{i=1}^K \alpha_i \right)$

 \bullet original problem (find average of K numbers):





• original problem (find average of *K* numbers):

1.5

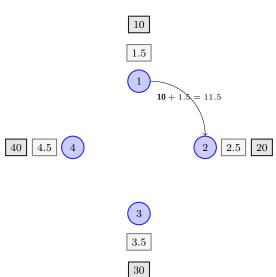
1

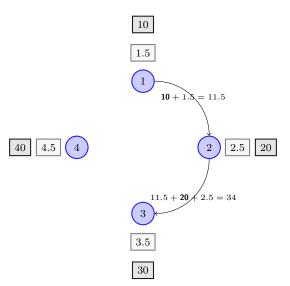
40 4.5 4

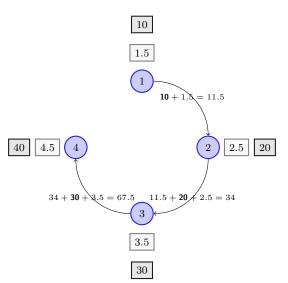
 $\left(\begin{array}{c|c}2\end{array}\right)$ $\left[\begin{array}{c|c}2.5\end{array}\right]$ $\left[\begin{array}{c|c}20\end{array}\right]$

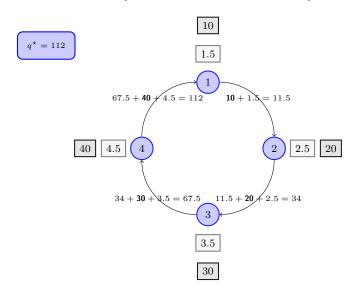
3.5

30









• original problem (find average of *K* numbers):

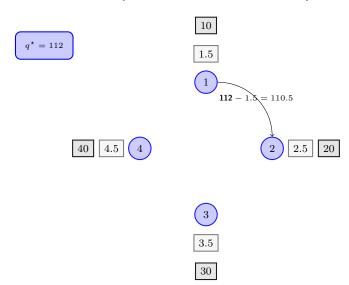
10

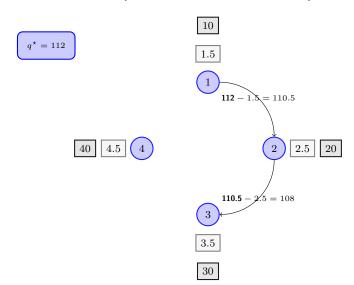
1.5

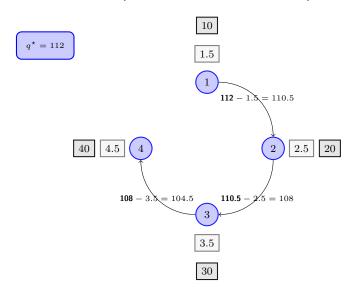
2 2.5 20

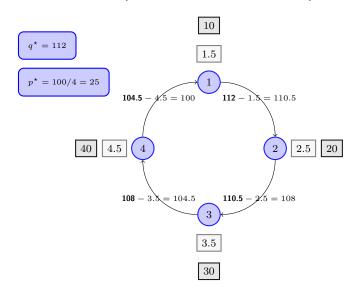
3.5

30









Unification, Disguising Private Data for SMC

Proposition (transformation of objective and constraint functions)

- $\psi_0:\mathbb{D}_0\subseteq\mathbb{R}\to\mathbb{R}$ is monotonically increasing and $\mathbb{D}_0\supseteq \mathsf{image} f_0$
- $\psi_i : \mathbb{D}_i \subseteq \mathbb{R} \to \mathbb{R}$, with $\mathbb{D}_i \supseteq image f_i$ and $\psi_i(z) \le 0 \Leftrightarrow z \le 0$
- $\psi : \mathbb{R}^p \to \mathbb{R}^m$ satisfies $\psi(\mathbf{z}) = \mathbf{0} \Leftrightarrow \mathbf{z} = \mathbf{0}$
- if x* solves

minimize
$$\psi_0(f_0(\mathbf{x}))$$

subject to $\psi_i(f_i(\mathbf{x})) \le 0, \ i = 1, \dots, q$ $\psi(\mathbf{C}\mathbf{x} - \mathbf{d}) = \mathbf{0}$ (4)

then solution x^* problem (1)

• the optimal value of problem (1), p^* , and that of problem (4), q^* , are related by

$$\psi_0(p^\star) = q^\star \ . \tag{5}$$

Unification, Disguising Private Data for SMC

Proposition (transformation of objective and constraint functions)

- $\psi_0:\mathbb{D}_0\subseteq\mathbb{R}\to\mathbb{R}$ is monotonically increasing and $\mathbb{D}_0\supseteq \mathsf{image} f_0$
- $\psi_i : \mathbb{D}_i \subseteq \mathbb{R} \to \mathbb{R}$, with $\mathbb{D}_i \supseteq image f_i$ and $\psi_i(z) \le 0 \Leftrightarrow z \le 0$
- ullet $\psi: \mathbb{R}^p o \mathbb{R}^m$ satisfies $\psi(\mathbf{z}) = \mathbf{0} \Leftrightarrow \mathbf{z} = \mathbf{0}$
- if x* solves

minimize
$$\psi_0(f_0(\mathbf{x}))$$

subject to $\psi_i(f_i(\mathbf{x})) \le 0, \ i = 1, \dots, q$ $\psi(\mathbf{C}\mathbf{x} - \mathbf{d}) = \mathbf{0}$ (4)

then solution x^* problem (1)

• the optimal value of problem (1), p^* , and that of problem (4), q^* , are related by

$$\psi_0(p^\star) = q^\star \ . \tag{5}$$

privacy is via the function compositions:

$$ar{f}_i(\mathbf{x}) = \psi_i(f_i(\mathbf{x}))$$
, $\mathrm{dom} ar{f}_i = \{\mathbf{x} \in \mathrm{dom} f_i \mid f_i(\mathbf{x}) \in \mathrm{dom} \psi_i\}$

$$ar{h}_i(\mathbf{x}) = \psi(\mathbf{C}\mathbf{x} - \mathbf{d}) \ \mathrm{dom} ar{h}_i = \mathbb{R}^n$$

Example of Transformation of Objective

original problem:

minimize
$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_2$$

- variable is $\mathbf{x} \in {
 m I\!R}^n$
- private data: $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$
- $rank(\mathbf{A}) = n$

Example of Transformation of Objective

original problem:

minimize
$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_2$$

- variable is $\mathbf{x} \in {\rm I\!R}^n$
- private data: $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$
- $rank(\mathbf{A}) = n$
- $\psi_0(z) = z^2 + b$

Example of Transformation of Objective

original problem:

minimize
$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_2$$

- variable is $\mathbf{x} \in \mathbb{R}^n$
- private data: $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$
- $rank(\mathbf{A}) = n$
- $\psi_0(z) = z^2 + b$

• equivalent problem:

minimize
$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 - \mathbf{b}^\mathsf{T}\mathbf{b} = \mathbf{x}^\mathsf{T}\hat{\mathbf{A}}\mathbf{x} - 2\hat{\mathbf{b}}^\mathsf{T}\mathbf{x}$$

- variable is $\mathbf{x} \in {\rm I\!R}^n$
- data: $\hat{\mathbf{A}} = \mathbf{A}^\mathsf{T} \mathbf{A} \in \mathbb{R}^{n \times n}$, $\hat{\mathbf{b}} = \mathbf{A}^\mathsf{T} \mathbf{b} \in \mathbb{R}^{n \times 1}$

DECOMPOSITION TECHNIQUES

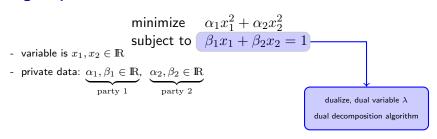
• original problem:

minimize
$$\alpha_1 x_1^2 + \alpha_2 x_2^2$$

subject to $\beta_1 x_1 + \beta_2 x_2 = 1$

- variable is $x_1, x_2 \in {\rm I\!R}$
- private data: $\underbrace{\alpha_1,\beta_1\in\mathbb{R}}_{\text{party 1}},\;\underbrace{\alpha_2,\beta_2\in\mathbb{R}}_{\text{party 2}}$

• original problem:



original problem:

$$\begin{array}{c} \text{minimize} \quad \alpha_1 x_1^2 + \alpha_2 x_2^2 \\ \text{subject to} \quad \beta_1 x_1 + \beta_2 x_2 = 1 \\ \text{- private data:} \quad \underline{\alpha_1, \beta_1 \in \mathbb{R}}, \quad \underline{\alpha_2, \beta_2 \in \mathbb{R}} \\ \text{- party 1} \quad \underline{\alpha_2, \beta_2 \in \mathbb{R}} \\ \text{- party 2} \end{array}$$

• kth subproblem solved by entity i:

minimize
$$\alpha_i x_i^2 + \lambda^{(k)} \beta_i x_i$$

- variable is $x_i \in \mathbb{R}$

• original problem:

$$\begin{array}{c} \text{minimize} & \alpha_1 x_1^2 + \alpha_2 x_2^2 \\ \text{subject to} & \beta_1 x_1 + \beta_2 x_2 = 1 \\ \text{- private data:} & \underbrace{\alpha_1, \beta_1 \in \mathbb{R}}_{\text{party 1}}, & \underbrace{\alpha_2, \beta_2 \in \mathbb{R}}_{\text{party 2}} \end{array}$$

• kth subproblem solved by entity i:

minimize
$$\alpha_i x_i^2 + \lambda^{(k)} \beta_i x_i$$

- variable is $x_i \in {\rm I\!R}$
- dual variable update at each entity *i*:

$$\lambda^{(k+1)} = \lambda^{(k)} - (1/k) \left(\underbrace{\beta_1 x_1^{(k)}}_{-\lambda^{(k)} \beta_1^2 / \alpha_1} + \underbrace{\beta_2 x_2^{(k)}}_{-\lambda^{(k)} \beta_2^2 / \alpha_2} - 1 \right)$$

QUANTIFY PRIVACY

Definition (Attacker model, Passive adversary)

- an entity involved in solving the global problem
- does not deviate from the intended protocol
- it obtain messages exchanged during different stages of the solution method
- keeps a record of all information it receives
- try to learn and to discover others' private data

Definition (Attacker model, Passive adversary)

- an entity involved in solving the global problem
- does not deviate from the intended protocol
- it obtain messages exchanged during different stages of the solution method
- keeps a record of all information it receives
- try to learn and to discover others' private data

Definition (Adversarial knowledge)

- ullet the set ${\mathcal K}$ of information that an adversary might exploit to discover private data
- ullet set ${\mathcal K}$ can encompass
 - real-valued components: $\mathcal{K}_{\mathrm{real}}$
 - transformed variants of private data
 - statements

Definition (Privacy index, $(\xi, \eta) \in [0, 1) \times \mathbb{N}$)

- private data $c \in \mathcal{C}$ is related to some adversarial knowledge $\mathbf{k} \in \mathcal{K}_{\mathrm{real}} \subseteq \mathcal{K}$ by a vector values function $f_c : \mathcal{C} \times \mathcal{K}_{\mathrm{real}} \to \mathbb{R}^m$, such that $f_c(c, \mathbf{k}) \leq \mathbf{0}$
- consider the uncertainty set

$$\mathcal{U} = \{c \mid f_c(c, \mathbf{k}) \le \mathbf{0}, \ f_c \text{ is arbitrary, } \mathcal{K}\}$$
 (6)

then

$$\xi = 1 - 1/N_{\mathcal{K}} \; , \quad N_{\mathcal{K}} \; \text{is the cardinality of} \; \; \mathcal{U}$$
 (7)

$$\eta = \text{affine dimension of } \mathcal{U}$$

(8)

Definition (Privacy index, $(\xi, \eta) \in [0, 1) \times \mathbb{N}$)

- private data $c \in \mathcal{C}$ is related to some adversarial knowledge $\mathbf{k} \in \mathcal{K}_{\mathrm{real}} \subseteq \mathcal{K}$ by a vector values function $f_c : \mathcal{C} \times \mathcal{K}_{\mathrm{real}} \to \mathbb{R}^m$, such that $f_c(c, \mathbf{k}) \leq \mathbf{0}$
- consider the uncertainty set

$$\mathcal{U} = \{c \mid f_c(c, \mathbf{k}) \le \mathbf{0}, \ f_c \text{ is arbitrary, } \mathcal{K}\}$$
 (6)

then

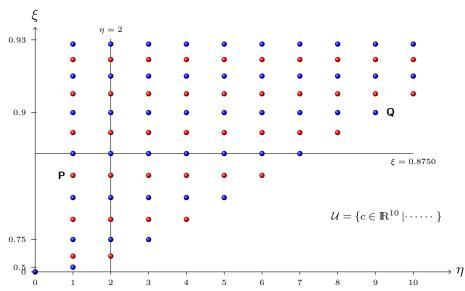
$$\xi = 1 - 1/N_{\mathcal{K}} \; , \quad N_{\mathcal{K}} \; \text{is the cardinality of} \; \; \mathcal{U} \eqno(7)$$

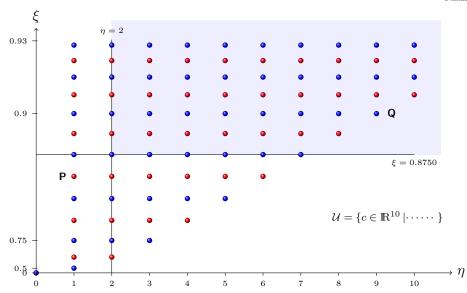
$$\eta = affine dimension of U$$

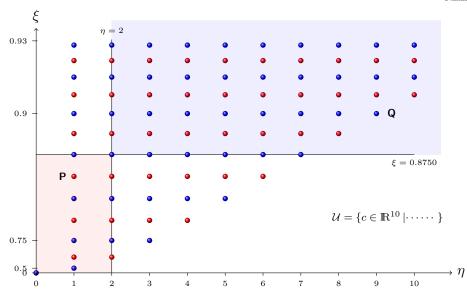
(8)

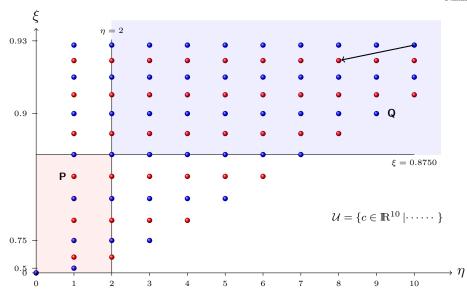
 ξ : a measure of probability that the adversary guesses wrong

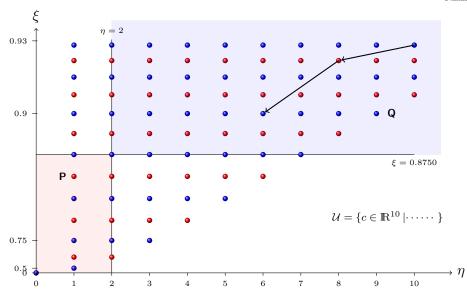
 η : indicates how effective the transformation disguises the private data

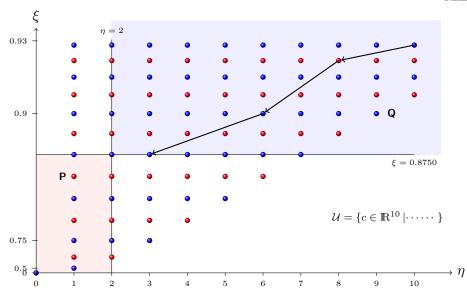


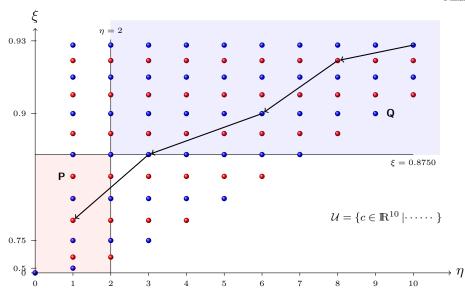


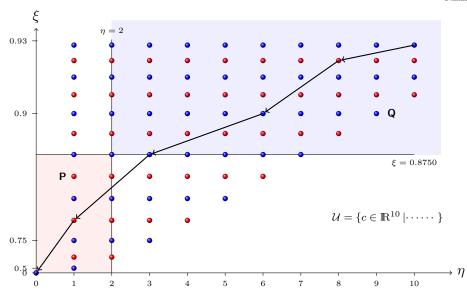


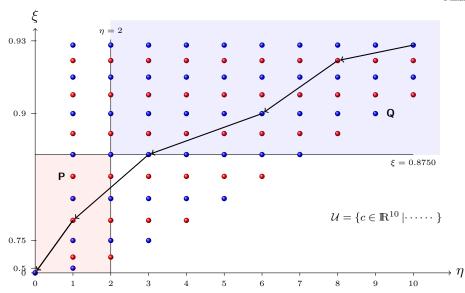












Privacy Index in a Least-Squares Problem

original problem:

minimize
$$||\mathbf{a}x - \mathbf{b}||_2$$

- variable is $x \in \rm I\!R$
- private data: $\mathbf{a}=(\mathbf{a}_1,\mathbf{a}_2)\in\mathbb{R}^6$, $\mathbf{b}=(\mathbf{b}_1,\mathbf{b}_2)\in\mathbb{R}^6$
- 2-parties: party 1 owns $\mathbf{a}_1, \mathbf{b}_1$, party 1 owns $\mathbf{a}_2, \mathbf{b}_2$

• equivalent problem:

minimize
$$||\mathbf{a}x - \mathbf{b}||_2^2 - \mathbf{b}^{\mathsf{T}}\mathbf{b} = (r_1 + r_2)x^2 - 2(s_1 + s_2)x$$

- variable is $x \in \mathbb{R}$
- data: $r_i = \mathbf{a}_i^\mathsf{T} \mathbf{a}_i \ i = 1, 2; \ s_i = \mathbf{a}_i^\mathsf{T} \mathbf{b}_i, \ i = 1, 2$

original problem:

minimize
$$||\mathbf{a}x - \mathbf{b}||_2$$

- variable is $x \in \rm I\!R$
- private data: $\mathbf{a}=(\mathbf{a}_1,\mathbf{a}_2)\in\mathbb{R}^6$, $\mathbf{b}=(\mathbf{b}_1,\mathbf{b}_2)\in\mathbb{R}^6$
- 2-parties: party 1 owns a_1, b_1 , party 1 owns a_2, b_2

• equivalent problem:

minimize
$$||\mathbf{a}x - \mathbf{b}||_2^2 - \mathbf{b}^{\mathsf{T}}\mathbf{b} = (r_1 + r_2)x^2 - 2(s_1 + s_2)x$$

- variable is $x \in \mathbb{R}$
- data: $r_i = \mathbf{a}_i^\mathsf{T} \mathbf{a}_i \ i = 1, 2$; $s_i = \mathbf{a}_i^\mathsf{T} \mathbf{b}_i, \ i = 1, 2$

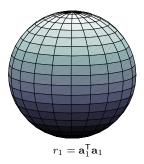
ullet party 2 is the adversary and wants to discover ${f a}_1$

• knowledge of party 2

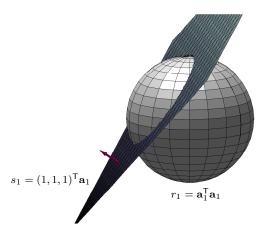
$$\mathcal{K} = \left\{r_1, s_1, \{r_1 = \mathbf{a}_1^\mathsf{T} \mathbf{a}_1\}, \{s_1 = \mathbf{b}_1^\mathsf{T} \mathbf{a}_1\}\right\}$$

$$\mathcal{U} = \left\{ \mathbf{a}_1 \mid r_1 = \mathbf{a}_1^\mathsf{T} \mathbf{a}_1, s_1 = \mathbf{b}_1^\mathsf{T} \mathbf{a}_1, \mathbf{b}_1 \in \mathbb{R}^3 \right\}$$

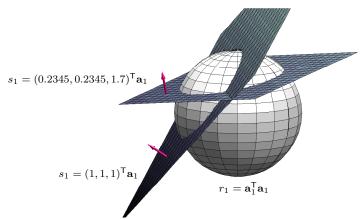
$$\mathcal{U} = \left\{ \mathbf{a}_1 \mid r_1 = \mathbf{a}_1^\mathsf{T} \mathbf{a}_1, s_1 = \mathbf{b}_1^\mathsf{T} \mathbf{a}_1, \mathbf{b}_1 \in \mathbb{R}^3 \right\}$$



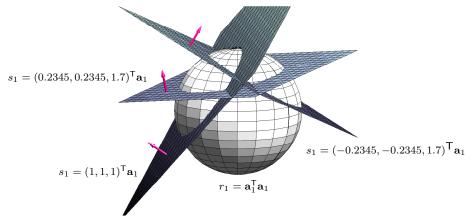
$$\mathcal{U} = \left\{ \mathbf{a}_1 \mid r_1 = \mathbf{a}_1^\mathsf{T} \mathbf{a}_1, s_1 = \mathbf{b}_1^\mathsf{T} \mathbf{a}_1, \mathbf{b}_1 \in \mathbb{R}^3 \right\}$$



$$\mathcal{U} = \left\{ \mathbf{a}_1 \mid r_1 = \mathbf{a}_1^\mathsf{T} \mathbf{a}_1, s_1 = \mathbf{b}_1^\mathsf{T} \mathbf{a}_1, \mathbf{b}_1 \in \mathbb{R}^3 \right\}$$

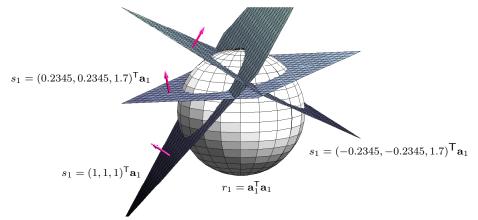


$$\mathcal{U} = \left\{ \mathbf{a}_1 \mid r_1 = \mathbf{a}_1^\mathsf{T} \mathbf{a}_1, s_1 = \mathbf{b}_1^\mathsf{T} \mathbf{a}_1, \mathbf{b}_1 \in \mathbb{R}^3 \right\}$$



• the uncertainty set of a₁:

$$\mathcal{U} = \left\{ \mathbf{a}_1 \mid r_1 = \mathbf{a}_1^\mathsf{T} \mathbf{a}_1, s_1 = \mathbf{b}_1^\mathsf{T} \mathbf{a}_1, \mathbf{b}_1 \in \mathbb{R}^3 \right\}$$



 \mathbf{b}_1 is known: $(\xi, \eta) = (1, 2)$ \mathbf{b}_1 is arbitrary: $(\xi, \eta) = (1, 3)$

CRYPTOGRAPHY VS NON-CRYPTOGRAPHIC METHODS

Cryptographic vs Non-Cryptographic Methods

Cryptographic methods	Non-Cryptographic methods
$ullet$ large circuit representations (1000s of bits) to compute $f(\mathbf{A}_1,\ldots,\mathbf{A}_n)$	no such restrictions
• not scalable	scalable
$ullet$ finite field restriction for ${f A}_i$	no such restrictions
$ullet$ hardly handle non-integer valued ${f A}_i$ (overflow, underflow, round-off, and truncations errors)	no such restrictions HQ implementations (LAPACK,BLAS)
$ullet$ f_0 and ${f g}$ are often restricted	no hard restrictions
mechanism influences the algorithm iterations	mechanism is transparent to the solver
$ullet$ theory for general f_0 and ${f g}$ are not promising	there exist a rich and a promising theory, e.g., convex optimization
$ullet$ privacy guaranties for ${f A}_i$ are broadly studied	to be investigated

Cryptographic vs Non-Cryptographic Methods

Cryptographic methods	Non-Cryptographic methods
$ullet$ large circuit representations (1000s of bits) to compute $f(\mathbf{A}_1,\dots,\mathbf{A}_n)$	no such restrictions
• not scalable	scalable
$ullet$ finite field restriction for ${f A}_i$	no such restrictions
$ullet$ hardly handle non-integer valued ${f A}_i$ (overflow, underflow, round-off, and truncations errors)	no such restrictions HQ implementations (LAPACK,BLAS)
$ullet$ f_0 and ${f g}$ are often restricted	no hard restrictions
mechanism influences the algorithm iterations	mechanism is transparent to the solver
$ullet$ theory for general f_0 and ${f g}$ are not promising	there exist a rich and a promising theory, e.g., convex optimization
$ullet$ privacy guaranties for ${f A}_i$ are broadly studied	to be investigated

Cryptographic Vs Non-Cryptographic Methods

encrypting simplex algorithm iterations...a quote from Toft [Tof09]

- start with 32-bit numbers
- after ten iterations these have grown to 32 thousand bits
- after twenty iterations they have increased to 32 million
- even small inputs \Rightarrow basic operations \Rightarrow mod. exponentiations with a million bit modulus"

Cryptographic Vs Non-Cryptographic Methods

encrypting simplex algorithm iterations...a quote from Toft [Tof09]

- start with 32-bit numbers
- after ten iterations these have grown to 32 thousand bits
- after twenty iterations they have increased to 32 million
- even small inputs ⇒ basic operations ⇒ mod. exponentiations with a million bit modulus"

Inefficient

Conclusions

If you think cryptography is the answer to your problem, then you dont know what your problem is.

> -PETER G. NUMANN Principal Scientist, SRI International Menlo Park, CA, 94025 USA

Conclusions

If you think cryptography is the answer to your problem, then you dont know what your problem is.

> -PETER G. NUMANN Principal Scientist, SRI International Menlo Park, CA, 94025 USA

- cryptography can be inefficient in many useful problems
- alternatives for cryptographic approaches: less investigated
- we believe that substantial research is required

THANK YOU

On the application of optimization methods for secured multiparty computations

C. Weeraddana*, G. Athanasiou*, M. Jakobsson*, C. Fischione*, and J. S. Baras**

*KTH Royal Institute of Technology, Stockholm, Sweden

**University of Maryland, MD, USA
{chatw, georgioa, mjakobss, carlofi}@kth.se; baras@umd.edu

ACCESS ISS 18.09.13

[Du01] W. Du.

A Study of Several Specific Secure Two-Party Computation Problems. PhD thesis, Purdue University, 2001.

KTH STITUTE OF TECHNOLOGY

[Tof09] T. Toft.

Solving linear programs using multiparty computation.

Financ. Crypt. and Data Sec. LNCS, pages 90-107, 2009.

[Vai09] J. Vaidya.

Privacy-preserving linear programming.

In *Proc. ACM Symp. on App. Comp.*, pages 2002–2007, Honolulu, Hawaii, USA, March 2009.

 $[WAJ^+13]$ P. C. Weeraddana, G. Athanasiou, M. Jakobsson, C. Fischione, and J. S. Baras.

Per-se privacy preserving distributed optimization.

arXiv, Cornell University Library, 2013.

[Online]. Available: http://arxiv.org/abs/1210.3283.