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LECTURE 5: EM PRINCIPLE



Landmarks

P roots trace back to
> H. O. Hartley (1958, EM algorithms)
» a phenomenal contribution from

> A. P. Dempster et al. (1977, ML ... via the EM algorithm)

> citations ~ 66500 (2022-May)



When to Use?

» observations are incomplete

> still you want to compute the ML estimate of parameter 6

P i.e., applied when observations can be viewed as incomplete

P missing value situations
» when there are censored or truncated data
» factor analysis

» many more



EM Vs MM

» EM = Expectation and Maximization

» an interpretation !

» EM transfers maximization of likelihood I(-) to Q( - [#(™)
> this transfer is simply the expectation step

» then Q( - |6(™) is maximized with respect to 6

> Q(-10™) is a minorization function 2 of I(-)

> i.e., we have SM (surrogate maximization) principle within EM

1See Optimization Transfer Using Surrogate Objective Functions by K.
Lange et al., 2000.
2Up to an irrelevant constant.



» is SM (or MM) 3 is just EM?
» a problem posed by Xiao-Li Meng #
» given SM construction — a corresponding EM construction?

» is EM class is as rich as SM class?

» Xiao-Li Meng's EM flu — no cure so far

3There is a slight difference though, see [Optimization Transfer Using
Surrogate Objective Functions]: Rejoinder by D. R. Hunter and K. Lange, 2000.

*See [Optimization Transfer Using Surrogate Objective Functions]:
Discussion by Xiao-Li Meng, 2000.



Key ldea

> recall..
> maximization of log-likelihood I(-) is transferred to Q( - |#(™)
> Q(-]0™) is a minorization function of I(-)
» then Q( - |6(™) is maximized with respect to 6

» i.e., we have MM principle within EM

» recall that the observations are incomplete



Formulation of the Setting

denote the complete data by x with likelihood 7y ()
denote the observed data by y with likelihood sg(y)

thus, the conditional density of x|y, kg(x|y) is given by

_ ro(2)

log-likelihood function of = is Inry(x)

log-likelihood function of y (observed data) is I(6) = In sy(y)



» EM literature defines the surrogate Q( - [6(™) as
Q(O10™) = {mro(a) | 4,0}

= / In Tg(l')k'g(n) ($|y) dx
X(y)

» heuristic idea:

> we would like to choose §* that maximize lnrg(z)
» but we do not have it because observations are incomplete
> instead, maximize the expectation of Inry(x) given

» the observations y

> the current parameter 6("")

~—



Q( - |9(”)) as a Minorization

» it can be shown that ®

Q(016™) — 1(6) = T {In Ky (aly) | 9,0 }

< E {Inkyon (aly) | 3,0 }
= Q™0™ - 116

> thus, Q( - |#™) is a minorization function of [ ®

®See Additional Reading section of the courseweb for a sketch of the proof.
®Up to an irrelevant constant.



EXAMPLES



Cell Probabilities of a Population

P> 197 animals distributed multinomially into 4 groups
» observed data y = (y1,y2,y3,y4) = (125,18, 20, 34)

» cell probabilities are of the form
(+4m3a-m3a-m.4n)
for some T with 0 <7 <1

» thus the likelihood of observed data is

(y1ty2t+ystya)! 1 4 1_1 1_1 1
sr(y) = s alyslyal (a+am)" (3—3m)* (3—37m)» (3m)"




» log-likelihood function [ is given by

I(m) = y1 In(3 + §7) + (y2 + y3) In(§ — §7) +yaln7w +c
» maximize [(7) subject to 7 € [0, 1] to determine 7*
P in this example

» observed data = complete data

» the procedure is straightforward

» what if observed data # complete data?



» 197 animals distributed multinomially into 5 groups
» complete data = = (z1, 22, T3, T4, X5)

» observed data y = (y1, Y2, y3,v4) = (125,18, 20, 34) where
> y1 =x1+ T2, y2 = T3, Y3 = 24, and Y4 = T35
» cell probabilities are of the form
(%7 iﬂ-y i(l - 71-)7 i(l - 71'), %7‘[’)
forsome mwith 0 <7 <1

» thus the likelihood of complete data is

o (Zz xl)' (1

TrelX) =
W( ) 1‘1!%2!1‘3!1‘4!.%5!



» EM defines the surrogate Q( - [7(™) as

~—

Q™) = B {Inra(x) | y, 7™ | (3

_ / In 7y (2)k, oy (2]y) da
X(y)

» here we have

Ko (]y) = — ()" (™) (@)
m (2]y) $1!x2!(%+%)y1 2 (4 )



> with some tedious steps it can be shown that *

Qrln™) = [(74" (4" (4 = 4504 = dm) @ ] +a®

1
n n Y1 250
xg ) _ IE{:):1|y’7r( )} =7 +217T(n) — SRk
2 4

™y 2507
% + %ﬂ'(") 24 ()’

Ign) = E{z2|y, Tr(")} = (5)

and o™ is an irrelevant constant which does not depend on 7

"When the underlying distributions are from exponential families, some
convenient tricks can be used when computing Q(M(")). See A. P. Dempster
et al. 1977, pp. 2-4.



> maximize Q(n|m(™) with respect to 7 to yield

n+1) _ xgn) + 34

mt T M) oy g
x5 + 34+ 38

Algorithm 1 EM for Computing Cell Probabilities

Input: 7 € (0,1), n=0

1
2:
3:
4
5

: while a stopping criterion true do

x2") is computed from (5)
("1 is computed from (6) and n < n + 1

- end while
- return 7™




Life of Light Bulbs

» lifetime information of 2 bulbs were observed

» observed data
» lifetime of the first bulb is y
> lifetime 2z of the second bulb is less than ¢
» note: z was not observed
> lifetime x of bulbs — an exponential density, i.e.,
_ —\z
p(z) =X, x>0

» 2z is known — ML estimate of \ is computed



complete data = = (y, 2)
observed data y and z <t

the likelihood of complete data is
ra(z) = de MW Ae N

EM defines the surrogate Q( - |A(") as

QUA™) = E{Inn(y,2) | .2 < t,2}

here we have

)\(n) 6—/\<") z

k/\<n)(y,z|y,z St) = W, 0<2z<t



» therefore we have

QUAM) = E{Inra(y,2) | 9,2 < 1,0}
=E {ln[)\e_)‘y)\e_AZ] |y, z <t, )\(”)}
=InXA—Ay+In)— AE{z]z < t,A\(M}

t )\(n)e—)\(")z
:21n)\)\y)\/021_6_>\(n)tdz

1 te*’\(n)t
A) ] =AMt

:21n)\—)\y—)\[




> maximize Q(A|A(™) with respect to A to yield

2

AN — 2
wn) + Y

» thus an EM algorithm for computing the lifetime of a bulb

» is readily derived



Mixture of Gaussian

> to be discussed!



