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LECTURE 4: KEY INEQUALITIES FOR MM (PArT III)



MAJORIZATION AND PARTIAL OPTIMIZATION



Partial Minimization

> variety of functions can be represented as partial minima !

f@)z&%gww) (1)

» such a function f can readily be majorized at (™ € R, i.e.,
= mi , 2
f(z) = min g(z,y) (2)

< g(w,y™) = h(z | 2™)

where y(") = arg min g(x(”),y)
yey

» h(z |#(™) is the restriction of g to set {(x,y™) | z € RP}

1t is assumed that the minimum over y € ) is attained for each .



EXAMPLES



Block Descent

P suppose you are given the problem

minimize  g(z,y)
subjectto xz € X
yey

» the problem is equivalent to

minimize  f(z) = min g(x,y)
yeYy

subjectto z € X
> MM principle: f(z) < h(z[z) = g(z,y™)

» can the constraint be of the form (z,y) € Z7



A SIMPLE PROBLEM

> consider the following problem

minimize  [|Az —y||
subjectto y €Y

where the decision variables are z,y

P the iterative algorithm reduces to:
x(n+1) — (ATA)flATPy(Ax(n))

where Py( - ) is the projection onto )



DISTANCE BETWEEN TwWO SETS
> X, Y — two disjoint closed sets

» compute dist(X,)) the optimal value of

minimize ||z — y|
subject to z,€e X,y €Y

where the decision variables are z,y

> the iterative algorithm reduces to:
2 — Px(Py(x(”)))

» optimality if X’ (or both sets) is nonconvex?



Proximal Minimization Algorithm

P> suppose you are given the problem

minimize f(x)
> trivial to see: f(z) =min [f(z) + (1/2p)||lz — y|[*], p >0
y
> thus a majorization function of f is given by h(z|z(™) where
h(zlz™) = f(a) + (1/20)||lz — 2|2
» output of h( . \:1:(”)) minimization compromises between

» minimizing f and being near to (™) (controlled by 1)



» the algorithm if MM principle is applied
2t — prox, (x("))
where prox,,; is called the proximal operator of 1 f,
prox,;(v) = argmin f(x) + (1/2p) o ~ o]
P the resulting algorithm is a proximal minimization algorithm

» also called: proximal iteration or the proximal point algorithm 2

2See § 4.1 of Proximal Algorithms by N. Parikh and S. Boyd, now
Foundations and Trends in Optimization 2013.



» why compute a sequence of proximal operators?

» subproblems usually admits easy closed-form solutions

» can be solved sufficiently quickly

» minimizing of (f+ quadratic) is easier than minimizing f
» handle ill-conditioned situations — higher reliability

> fewer iterations or faster convergence

» amenable to distributed optimization

» an application: iterative refinement — a homework exercise



Schur Compliment Majorization

» more specifically

P we are given a vector x
» we have a parameter matrix D given by
A B
D — T
B'" C
» now it is useful to bound

1) zTA ' 2) InlA|



Bounding z7A "'z

» we have 3

fx) = inf g(z, 2)

= [ [ ) [

=2 Az

3See § A.5.5, Convex Optimization by S. Boyd and L. Vandenberghe, 2004.



» from the last two equations we get for all A, B and C

T, | "Ta BI''[ &
“|\BTA x| |BT C© BTA 1y

< T4 B '«
- Z(n) BT C Z(n)

with z(W = ()T (A(”))_lx

P> note that the inequality holds with equality when

A=A" B=pB" c=cm



Bounding In | A]

» the Schur complement of A in the matrix D is given by
C—-B'A™'B
» for clarity let us define G as
G=(C-B"A'B)™!
» we have the following determinant identity

D] = |A] x |C — BTAT'B| = |Al/|G



» now we can bound In|A| as follows:

In|A| =In|D|+ In|G]
<In|D|+In|G™| + Tr[(G(”))_l(G —GM)]
=In|D|+ In|G™| - Tr(I) + Tr[(G™) 1G]
=In|D|+In|G™| - Te(I) + Te[DFM]  (4)

> the last equality follows from that F(") £ [O (G("))l} and

oo [ATH+ A"'BGBTA™! —A‘lBG]

~GBTA™! G
P note that the inequality holds with equality when

A=A B=pB" c=c"



Fenchel Conjugate

» Fenchel conjugate # of a function f

/(@) = sup {aTy - f(v)}
» in general we have for

/(@) = sup {«Ty - f(v)}

>y 'z — f(7)
= g(z|2™™)

where y € 0f* (x(")) = argmax {z("Ty — f(y)}
y

*For more details see pages 15-17.



APPENDICES



Legendre-Fenchel Transform

» for any function f: IRY — IR define °
f*(a) = sup {aTy — f(y)} (9)
Y
> f* is called the conjugate to f

> biconjugate to f is given by f** = (f*)", where

I (y) = sup {y"z — f*(2)} (10)

*R =R U {co}.



» the mapping f — f* from fcns(RY) 6 into fcns(RY)

» is called the Legendre-Fenchel Transform ’

» if f is proper, Isc, and convex, so is f* and f** = f

®fcns(IRY): the collection of all extended-real-valued functions on R™
"See pp. 473-476 Variational Analysis by R. T. Rockafellar and R. J-B
Wets, 3rd printing 2009.



» for any proper, Isc, convex function f
T€0f(y) = §EOf(2) = fH)+ (@) =1y
where
0f(y) = argmax {g'e—f"(2)} Of (%) = arg max {#Ty—f(v)}
> in general,

f)+ @) >2Ty  for all z,y

» see Proposition 11.3, R. T. Rockafellar



