MM Optimization Algorithms

Chathuranga Weeraddana

April 2022



LECTURE 2: KEY INEQUALITIES FOR MM (PART I)



Majorizations and Minorizations

P it involves ingenuity and skill
» a list helpful majorizations and minorizations
» next 2-3 lectures we review a few basic themes

> list is still growing



JENSEN’S INEQUALITY



Jensen’s Inequality

» recall: when f is convex, then we have

flax+ (1 —a)y) <af(z)+(1—a)f(y),

> more generally

F(X; aiti) <30 aif(ts),

where > . a; =1 and a; > 0 for all ¢

a € [0,1]



A Different Useful Form

» suppose a € RY and § € RY and all are possitive
> in (1), let

pn) Tp(n)
a;0; _a'f '
o = T and t; = 0;

» then from (1), we get

N ) Ty(n)
T a;0; a'l '
fla'0) < 2 aTom f< D) 9’)

1= 7

= g(0]0™)



Counting with Poisson

probability model: Poisson
it predicts number of events over some period of time

probability that there are y events is given by

,U/yei'u

pu(Y = y)
let © modeled as an affine function of u € RY, ie., W= 0"y

u : the explanatory variable, 8 : the model parameter
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Counting with Poisson

(u(4),y(j)), 5 =1,...,m: a number of observations (data)
ML estimate of the model parameters 6 € ]Rf+?

the likelihood function of data has the form

po( (u(j) f[

the log-likelihood function f(6) = log py( (u(j),y(j))j)

)) v(d) =0 Tu(j)

y(4)!

the log-likelihood function f should be maximized over 6



Counting with Poisson

P let us compute a minorization function:

£(0) =log po((u(j),y(5));)
= Z j)log (u(j)T6) — u(j)"6 —log(y(j)!)

@

v

ijmlog Sjinbi) —u(j)T9 +s
j=
=g<9re<”>>,

where




Counting with Poisson

> as a result of maximizing ¢(#|0(™), we have

+1 . .
0 = (s ywsin) /5 wi)
» for an arbitrary explanatory u € IR", the Poisson model is

(G*Tu) Yexp (—H*Tu)
!

po-(Y =y) =

9

where 0% is given by the MM algorithm after the convergence



Finite Mixture Model

» used for 1

P categorizing age groups of animals
» medical diagnosis and prognosis

» |atent structure analysis

P probability distribution is modeled as

Pox(y) =D 7k Do (y) (3)
k=1

» 0= (p,7m)= (¢, 71,...,7) : the model parameter

'For more examples, see § 2 of Statistical Analysis of Finite Mixture
Distributions by D. M. Titterington, A.F.M. Smith and U.E. Makov, 1985.



Finite Mixture Model

> e.g., Gaussian mixture model

> d):(:ula"'vﬂcazlw"azc)

> pie(-) is a Gaussian density, more specifically

L oxo | — (v — o) VS (y — )
Pro(y) = @) o] p ( 2’6 ) (4)

> 9:(/j/].a"'aMCazla"'72077T17"'aﬂ-c)



v

v

v

Finite Mixture Model

(y(4)), j =1,...,m: a number of observations (data)
ML estimate of the model parameters 67

the likelihood function of data has the form

po( (W), ) = [ por(w()
j=1

=TI D_ 7 prew()

j=1 k=1

the log-likelihood function f(6) = log py( (y(]))J)

the log-likelihood function f should be maximized over 6



Finite Mixture Model

» let us compute a minorization function:

£(0) =log pa( (y(5));)

= Z log (Z Tk pkqﬁ(?/(f)))
(i) > [Z Wik log <3]kn7rk pk¢>(y(]))>]

7j=1 Lk=1
= g(0]6™),

where

T Do (9(5))
S ™ by g (7))

_ -1
Wikn = and sjgp, = Wik,



Finite Mixture Model

> let us maximize g(6]6(™) which is given by 2

9\9 Zijknlogwk+Zngkn10gpk¢ y(5))

kl]l kljl

= Za,m log 7, + Zzw]kn log prg(y(4))

k=1 j=1
m
where ag, = j=1 Wjkn

» ¢ and ™ = (m1,...,m.) are separate — maximize separately

2)rrelevant constants are dropped.



Finite Mixture Model

> maximization with respect to 7

maximize Yy _; Qg log T
subject to > ;_ =1
>0, k=1,...,c

» closed form solution of the problem above is

7Y = g/ (T8, )

= ( >t Wikn) /M



Finite Mixture Model

> suppose py is given by (4)
» maximization with respect to ¢ = (f1,- .., fhe, 21, -« - 5 Dc)

maximize Zzzl Z;n:l Wiikn 10gpk¢(y(j)) (6)
subjectto X =0, k=1,...,c

> alternating optimization to solve (6) in closed form

M}(€n+1) _ (1/m) Z;” 1Y(j) < check! a mistake?

E’(:A»l) Z Z%m( ](€+1)) (y(;)—ﬂlin+l)>T

=1 Wikn i=1



Finite Mixture Model

> as a result of maximizing g(#]#(™), we have

(n+1)

9£n+1) = u(1n+1), e Egm_l), e 7r§n+1), ce, T

¢(n+1) ﬂ.(n+1)

> thus, the pdf model py« -+ : R! — R is [compare with (3)]
C
Por e (y) = > 7 Do (y)
k=1

where 6* = (¢*, 7*) is given by the MM algorithm



CAUCHY-SCHWARZ INEQUALITY



Cauchy-Schwarz Inequality

» suppose z,y € RY
» Cauchy-Schwarz inequality is given by

.
[y x| < llyll [l

> e, —[lyll 2|l <yTz <|lyll |2l



MDS

MDS stands for multi dimensional scaling

there are n objects

we are also given their pairwise dissimilarity d;; > 0
need to represent n objects by using points in IR?

those points are given by x, € RP, k=1,....n



MDS

> we want to compute X € IRP*™, where
X =[xy ]

» the variable X is computed by minimizing f where

FX) =" (dij — [l — ))°

i i
D ID LD ) BRI
i g i g

—2) > dijlli — ]|

1 jFi

» function f should be minimized with respect to X



MDS

» let us compute a majorization function to the last term

» we have from the Cauchy-Schwarz inequality

(21" — ") (i — )
‘ 2 — 2"

= gij(X|X™)

—dijl|lzi — z;]| < dij

» thus a majorization function for f is given by
OO0 < 30 Nl =l +2357 3 g (XX ™) +-d
i g i g
= g(X|X ()



MDS

» f is not differentiable

> g( - |X(™) is not only differentiable, but also quadratic

> further processing: ||z; — ;|| can also be majorized

> why?



MDS

» f is not differentiable

> g( - |X(™) is not only differentiable, but also quadratic
> further processing: ||z; — ;|| can also be majorized
> why? to enable separability

» a small trick based on the convexity of || - ||?, i.e.,



MDS

—

— | — 2+ (1/2) (& = 2™ 4 2 - ;cg"))

= (2%—(2?2(»”)4-3:;”))) —% <2wj—(x§n)+x(-n)))

1 2

Ti——= i

(x(n)+x§n))

= §i; (X|X™)

- (xi—(1/2) (xﬁ”)+x§-”))) - (l‘j—(l/Q) (2" 4

()

)i



MDS

» thus the new majorization function for f is given by
PO <IN (XX ™) 42373 gy (XX ™) 4 d
i g# i ji
= h(X|X™)

» h(-|X™) is quadratic and separable
> minimize h( - | X ™)
» closed form: up to each element x;,, of z;, i.e.,

x(n-&-l) — ($(n))

m \¥im

> you may compute 7;



SUPPORTING HYPERPLANE INEQUALITY



Supporting Hyperplane Inequality

» for a convex function it produces an affine minorization
» for a concave function it produces an affine majorization

» suppose f is convex, then

f(z) > f(a:(”)) + o™ (z — x("))
= g(z[z™™)

where v(") € 8f(ac("))



Maximizing a Convex over Compact Set

» maximizing a convex f over compact C C R"

P> not a convex problem

» however, the maximizing g( . |x(")) turns out to be promising
> related to the well-known support function o¢ of C given by

oc(y) =sup y'x
xzeC



Maximizing a Convex over Compact Set

> eg.,
maximize (1/2)(z —a)" P(z — a)
subject to ||z|| =1

» P is positive semidefinite and a € R"

» the solution of the problem above is

n+l) _ 1 p(x(n) — a)

2
[P a)]



Concave-Convex Principle

minimizing a difference of convex functions f and h
i.e., f— his to be minimized
not a convex problem

consider the following majorization for —h
—h(z) < —h(x(")) — T (z — x(n))

where v ¢ 8h(x("))



Concave-Convex Principle

» thus a majorization function for f — h is given by

f(z) = h(z) < f(z) — h(:n(”)) — pMT (z— x(”))
= g(af™)

> note that g( - |2(™)) is convex and we have

(") = arg min g(az|x(”))



Concave-Convex Principle

e.g., minimizing a quadratic over a compact and convex set
let P be symmetric and indefinite, C compact and convex

consider the problem

minimize z'Pux
subject to xz €C

not a convex problem

we can express x' Pz in the form f(z) — h(z), f,h convex



Concave-Convex Principle
» the spectral decomposition of P

P=VAVT = Z \vv) — Z |)\j]vjva

{i|A:>0} {71 <0}
Q e
=Q-R

where Q, R =0

P as a result, we have
2Pz =12"Qx — 2" Rz
<2'Qx—22"TRx + ¢
= g(z[2™)



Concave-Convex Principle

» thus the following problem is to be solved

maximize g(z|z(™) = 2TQz — 22T Rz + ¢
subjectto xz €C

» this is a constrained (convex) quadratic problem where

(D) = argmin g(m|x("))
zeC



Concave-Convex Principle

P another example: weighted sum-rate maximization

maximize Zfil log [1 + SINR;(p)]
subject to Ap < b
p=0

where p = [p1...pn]T, A€ RM*N b ¢ RM, and
a;p;

SINR, =
z(p) 0.2 + ijéi OZin

» you will try this in homework



