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LECTURE 1: INTRODUCTION



Course Information

» Examiner: Carlo Fischione (carlofi@kth.se)
» Instructor: Chathuranga Weeraddanana (chatw®kth.se)

» Lectures: Wednesday ! 13:00-15:00 CET, 7 weeks

!There is one exception. See the course webpage.



Course Information

» Course Website:

» https://chathurangaw.staff.uom.lk/files/KTH/
courseinfo.html

P> Textbooks:
» Kenneth Lange, MM Optimization Algorithms
» Evaluation:

» based on homeworks + take home exam + mini project

» Grade: binary


https://chathurangaw.staff.uom.lk/files/KTH/courseinfo.html
https://chathurangaw.staff.uom.lk/files/KTH/courseinfo.html

Course Information

» Any other related information:

» contact Carlo or myself



My Sincere Gratitude

» to Prof. Kenneth Lange (Computational Genetics at UCLA)

» for sharing some recently updated materials

> they were very useful when preparing the slides



History

roots trace back to

> A.G. McKendrick (1926, epidemiology)
> F. Yates (1934, multiple classification)
> E. Weiszfeld (1937, facilities location)
> C.A.B. Smith (1957, gene counting)
» H.O. Hartley (1958, EM algorithms)

J.M. Ortega & W.C. Rheinboldt (1970, enunciation)

J.D Leeuw (1977, multidimensional scaling)

A.P. Dempster et al. (1977, EM algorithms)

H. Voss and U. Eckhardt (1980, a firm theoretical foundation)



MM OPTIMIZATION ALGORITHMS
APPLICATION DOMAINS
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Applicaton

logistic regression
quantile regression
discriminant analysis
factor analysis

matrix completion
image restoration

DC programming
signomial programming

many others

Domains



Problem

» a general formulation of an optimization problem 2
minigmize f(0)
subject to 0§ € F

» the decision variable is 6

» f and F depend on the application

» f encodes what we want to optimize

> F encodes the underlying constraints

2see under the Additional Reading: A Brief on Optimization.



Geometric Interpretation

p*: optimal value

6*: solution




What is MM?

» MM stands for

» majorize and minimize in a minimization problem

» minorize and maximize in a maximization problem



Majorize and Minimize




The MM Principle

P is not an algorithm

» a useful principle for constructing optimization algorithms
» the resulting algorithms are called MM algorithms

» majorize and minimize in an iterative mannar



THE MM ALGORITHM
A GEOMETRIC INTERPRETATION



Geometric Interpretation
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Geometric Interpretation




The MM Algorithm: Key |dea

P> majorize and minimize in an iterative mannar



Minorize and Maximize

» applied for maximization problems in a similar mannar



Why MM Algorithms?

» MM principle simplifies optimization by
» separating the variables of a problem
> avoiding large matrix inversions
» restoring the symmetry

» turning a non-smooth problem into a smooth problem



SOME NOTATION AND DEFINITIONS



Majorization Function

> g(0]6™) is said to majorize f(6) at 6™ provided

f(g(N)) = g(e(”)w(”)) : tangency at 6

£(6) < g(010™) for all §: domination

> g( - |#™) is a majorization function of f(-) at 6"



Majorization Function

P majorization relation between functions is closed under

> sums
» nonnegative products
> limits

» composition with an increasing function



Minorization Function

> g( - [0™) is a minorization function of f(-) at 6 when

> —g(016™) majorizes —f(6) at 6



THE MM ALGORITHM



MM Algorithm

Algorithm 1 MM Algorithm

Input: 00 ¢ F,on=0
1: Compute g( - |6()

2. 0t = argmin g(¢9|9("))
0eF

3: n:=n-+1and go to step 1




Descent Property

» MM (minimize/majorize) algorithm is a descent algorithm
> i, f(OCT) < £(00) for all n € Z

» simple to verify the descent property

F(OUD) < inf (016" (1)
< g(6™]o™) (2)
= f(6™) (3)



SOME COMMON TRICKS WITH CONVEXITY AND
LipscHITZ CONTINUITY



Affine Lower Bound

» suppose f is convex and differentiable

» then we have

£O) = F(0) + V£ (0™) (6 — ™)
= g(06™)

g(0]6™) minorizes f(6) at 6

> eg., f(0) = —log 6 > —logd™ — (1/6() (9 — o))



Jensen’s Inequality

» suppose [ is convex

» then we have

flaz+(1—a)y) <af(@)+(1-a)f(y), a€l0,1]



Jensen’s Inequality

> let u,v > 0 and let

o= x = u, Y= v
u

(n) + 1)(”) ’ u(n) v(n)

» thus, from the Jennsen’s inequality, we get

floti) < o | w4 Yammm ! | " m Y

» 1 and v can be positive functions of 6, e.g., u(6) and v(6)




Jensen’s Inequality

> g(0]6)) majorizes f(u(6) +v(6)) at 6™

> eg., f(6)=—log 6 =7



Quadratic Upper Bound

» suppose f is twice differentiable and gradient Lipschitz
continuous 3, i.e.,

IVf(0) =V f(B)ll2 < L0 — B2 forall 0,5

» then we have

F0) < FOM) + VF(O™)T (9 — 0 + fue 0|3
= g(6/6™)

> g(0|c9(”)) majorizes f(#) at §(")

> eg.,. cos 0 < cosf™ —(sinf™)(0-0)+(1/2)(6—0()2

3The following condition is equivalent to a bound on the Hessian V2 f(8) of
f. For example, LI — V2 f(0) = 0 is positive semidefinite (LI — V2 f(0) > 0).



SOME RELATED MM EXAMPLES



Minimize cos 0

cos (-) is twice differentiable and gradient Lipschitz
continuous with constant 1

ie.,

f(6) =cos 6
< cos 0™ — (sin0™) (0 — 0)) + (1/2)(0 — 9)?
= g(6]6™)

minimize the majorization function g( : |¢9(”))

thus we have
p(nt+1) — p(n) +sin pn)



Bradley—Terry Model

» prob. model: predicts the outcome of a paired comparison
P let us consider a sports league with m teams
» ith team’s skill level is parameterized by 0;, i =1,...,m

» probability that ¢ beats j is given by

0;
91' + 9j

pi(0) =



Bradley—Terry Model

v

let b;; be the number of times ¢ has beaten j (data)
» ML estimate 4 of the model parameters 6 € R, ?

» the likelihood function of data has the form

po®) =] (pis(6))"

.

v

the log-likelihood function f(0) = log py(b)

» the log-likelihood function f should be maximized over 6

*For a concise description of ML estimation, see § 7.1.1 Convex
Optimization by S. Boyd and L. Vandenberghe, 2004.



Bradley—Terry Model

» let us find a minorization function:

1(6) = log po(b) = log T] (pis(0))"

0;
=2 bijlog (91» +9j>

1,]
2%

> > by [log 6+ g5 (6167
1,]

where

(plpm™Y — _ ) gy L ) ()
913(9]0 )— log(@i +0; ) ‘9(”)+9§n) (914-9] 0;"—0; )

1



Bradley—Terry Model

> as a result

) , (), pn) 0i +0;
f(0) > Z bij |log 0; —log (6, + 0; ) — PO +1
1,] 7 J

= g(019"™)
> maximize the minorization function g( - |0(”))

» thus we have

0(n+1) . Zj;éi bij

i (big + i) (6 4 687)



An example Based on Jensen's

» you will be solving a problem in your homework

» based on the inequalities discussed in page 26



Key Themes

» helpful majorizations and minorizations techniques?

» next 2-3 lectures



